

A Mechanism-Based PK/PD Model Predicts the Time-Course of Hematological responses for Epoetin beta

N. Hayashi, K. P. Zuideveld, P. Jordan & R. Gieschke

Modeling & Simulation Group & Biometrics, F. Hoffmann-La Roche AG, Basel, Switzerland

June 13th, 2003, PAGE meeting, Verona, Italy

Objectives

to develop a Mechanism-Based PK/PD model:

- to describe the hematological responses in healthy volunteers' study
- to predict the hematological responses in renal anemia patients' studies
- to predict not only mean values but also individual values' distribution
- to predict the responses for different dose routes & different dose frequencies

Outline

Mechanism of Epoetin pharmacodynamics
PK/PD modeling with healthy volunteers' study
Simulation for renal anemia patients' studies

Mechanism of Epoetin pharmacodynamics Physiological background (1)

- Erythropoietin stimulates the release of RBC (reticulocyte) from Bone Marrow
- Erythropoietin is a glycoprotein produced in the kidneys
- Renal dysfunction patients show anemia because the endogenous EPO production is reduced

Mechanism of Epoetin pharmacodynamics Physiological background (2)

Mechanism of Epoetin pharmacodynamics Characteristics of PK/PD model

- an identical life span for all RBC (zero order elimination)
- a homeostatic negative feed back
- a lag time
- an indirect response model for reticulocyte with a variable k_{out} (immature reticulocyte increase)
- an E_{max} model with a variable base line
- a blood sampling effect

$$P'(t) = P_0(t) + \frac{E_{max} \times C_p(t)}{EC_{50} + C_p(t)}$$

$$P_0(t) = \overline{P}_0 \times exp(-Slope \times \Delta Hb(t))$$

$$\overline{P}_0 = RBC(0) / SPAN$$

RET = Reticulocytes RBC = Red Blood Cell

PK/PD modeling with healthy volunteers' study Study design

> Subjects: 46 healthy volunteers Dosage of Epoetin beta: 1) 50 IU/kg x3 / week sc 2) 150 IU/kg x1 / week sc 3) 300 IU/kg x1 / 2 weeks sc Administration period: 4 weeks Variables: RBC, Hb, Ht, reticulocyte & plasma erythropoietin concentrations

PK/PD modeling with healthy volunteers' study PK analysis

The PK analysis was performed using a one compartment, first order absorption, first order elimination model including an endogenous level

The following PK/PD analysis considered the Bayes estimated PK parameters of each subject

PK/PD modeling with healthy volunteers' study

PK analysis with a simple model was enough for the following PK/PD analysis

PK/PD modeling with healthy volunteers' study Hematological responses for each cohort

mean±SE

PK/PD modeling with healthy volunteers' study The values of PK/PD parameters were reasonable

	_	-	
	Theta	Eta	
EMAX (x10 ⁴ /uL/day)	4.74	1.292E-06	CV(%)
EC50 (mIU/mL)	25.2	101.5	CV(%)
SLOPE (dL/g)	0.274	77.8	CV(%)
POW	1.05	-	
transit time (day)	4.76	22.2	CV(%)
MCH (pg)	30.1	1.077	SD
MCV (uL)	88.2	2.81	SD
RBC0 (x10 ⁴ /uL/day)	492	28.6	SD
RET0 (x10 ⁴ /uL/day)	4.15	27.2	CV(%)
		SIGMA	
RET (x10 ⁴ /uL/day)		14.9	CV(%)
RBC (x10 ⁴ /uL/day)		15.8	SD
Hb (g/dL)		0.458	SD
Ht (%)		1.46	SD

PK/PD modeling with healthy volunteers' study The values of PK/PD parameters were reasonable

> Theta 4.74 25.2 0.274 1.05 4.76 30.1 88.2 492 4.15

EMAX (x10 ⁴ /uL/day)
EC50 (mIU/mL)
SLOPE (dL/g)
POW
transit time (day)
MCH (pg)
MCV (uL)
RBC0 (x10 ⁴ /uL/day)
RET0 (x10 ⁴ /uL/day)

Fta	
\leftarrow The E _{ma}	_x - to - P ₀ ratio was
approxir	nately 1.2, similar to that for
mice and	d dogs (reserved capacity)
-	
22.2	CV(%)
\leftarrow The the	ta and eta for MCH, MCV
RBC0 a	and RET0 was identical with
the pred	dose values
<u> </u>	~ · (/ ~ /

RET (x10 ⁴ /uL/day)
RBC (x10 ⁴ /uL/day)
Hb (g/dL)
Ht (%)

SIGMA

0 1

14.9	← The predose intra-individual
15.8	variability (SAS proc MIXED)
0.458	matches these sigma value
1.46	

PK/PD modeling with healthy volunteers' study

Bayes estimated values showed a high correlation with the observed values

PK/PD modeling with healthy volunteers' study

Simulated values distribution matches the ones of observed values (PPC)

80%CI for simulation (lines) & observed values (circles)

Simulation for renal anemia patients' studies Simulation method

- Only RBC baseline and clearance were modified from HV
- The studies for the reference were selected for
 - SC weekly
 - SC daily
 - IV x 3 / week
- Simulation was performed using Trial Simulator TM (n = 10000) for each cohort

Simulation for renal anemia patients' studies Clearance in renal anemia patients

Simulation for renal anemia patients' studies *Study 1: sc weekly*, Hb time course was predicted for 8 weeks

Line: median & 90%Cl for simulation Circle: mean of observed values Hb₀: 7.7 g/dL

Simulation for renal anemia patients' studies Study 1: sc weekly, the distribution of Δ Hb was predicted

22

Simulation for renal anemia patients' studies **Study 2: sc daily**, the distribution of Ht slope was predicted

broken line: median of simulated values real line: median of observed values red curve: distribution of simulated values ²³

Simulation for renal anemia patients' studies **Study 3: iv x3 / week**, the distribution of Ht slope was predicted

broken line: median of simulated values real line: median of observed values red curve: distribution of simulated values

Simulation for renal anemia patients' studies

Maintenance study:

the model could also predict the distribution of maintenance dose

Red line: simulation for IV x3 / week

25

Conclusions

- A mechanism-based PK/PD model was developed which is able to describe the time courses of hematological responses for Epoetin beta in healthy volunteers
- This model also predicted the time courses in renal anemia patients
- The model predicts not only the mean values but also the individual values' distribution
- The model was useful for predicting responses with different dose routes, different dose frequency
- The model was useful for predicting maintenance dose