Evaluation of a Random Sparse Sampling Design An Assessment of Power and Bias Using Simulation

Ken Kowalski (ken.kowalski@pfizer.com) Matt Hutmacher (matthew.hutmacher@pharmacia.com)

> June 12-13, 2003 PAGE Annual Meeting

Outline

- Introduction
- Objectives
- Simulation Components
 - Data
 - Population PK Simulation Model
 - Sub-study Trial Design
- Simulation Plan
- Simulation Evaluation
- Simulation Results
- Conclusions
- Final Remarks

Introduction

- Obtain PK information in a phase III out-patient trial in the targeted patient population
- Integrate PK sub-study into overall trial using a convenient, sparse sampling design
 - Minimize burden on patient and clinic
 - Ensure adequate power to assess patient factors
 - Ensure design adequacy by minimizing design- and modelinduced bias
- Simulation is a valuable tool to address these concerns
- Based on previously presented/published work
 - DIA Annual Meeting, 1999
 - ASCPT Annual Meeting, 2000
 - Kowalski & Hutmacher, Stats. in Med. 2001;20:75-91

Objectives

Power to assess covariate effects

Detect a 40 percent reduction in CL/F (∆CL= -40%) in an arbitrary sub-population of clinically meaningful size (e.g., 5 or 10%)

Evaluate bias in key parameters (e.g., CL/F)

- Sparse designs can fail to support the model complexity of phase I (dense sampling)
- Bias in the estimates can be induced by choice of design/model
 - Are estimates still interpretable with phase I?

Simulation Components: Data Sets

Index data set

- Single dose healthy volunteer study
 - 3 dose levels
 - 50 subjects per dose
 - Dense sampling
- □ Validation data set
 - Multiple dose healthy volunteer study
 - 3 BID + 1 QD dose regimens
 - 8 subjects per dose regimen
 - 24 hour single dose lead-in
 - Dense sampling during single dose lead-in and at steady-state

Simulation Components: PPK Model

- Two-compartment model with lagged firstorder absorption
- Interindividual variability model
 - $\ge \theta_i = \theta_o \exp(\eta_i)$
 - θ_i := individual's parameter vector (CL/F, V/F, ...)
 - $\theta_o := population's typical value vector$
 - $\eta_i :=$ random effect vector ~(0, Ω)
- Intraindividual variability model
 - $\succ y = f(y \mid \eta) + f(y \mid \eta) \epsilon_1 + \epsilon_2$
 - y := observed concentration data
 - $f(y|\eta) :=$ individual model prediction
 - $\varepsilon_k := \text{proportional} + \text{additive residual errors} \sim (0, \sigma_k^2)$

			Interindividual Correlations					
Parameter	Estimate	%CV	T _{lag}	k _a	CL	V ₁	Q	V_2
T _{lag} (hr)	0.318	34.8	1					
k _a (1/hr)	0.799	69.3	0.397	1				
CL (L/hr)	6.10	35.4	0	0	1			
V ₁ (L)	26.6	61.7	0	0	0.669	1		
Q (L/hr)	11.4	37.0	0	0	0	0	1	
V ₂ (L)	33.6	22.4	0	0	0	0	1 a	1

$$\label{eq:sigma_1} \begin{split} \sigma_1 &= 19.5 \; (\% CV), \; \sigma_2 = 3.54 \; ng/ml \\ a. \; \eta^{V2} &= \varphi \eta^Q \end{split}$$

Fit (Index Data) & Simulated Data

Note: Concentrations scaled by dose.

June 12, 2003

PAGE Annual Meeting

Q-Q Plot of Obs. Vs. Sim. (SD PPK)

Simulate PK data

- Parameters estimated from index data set
 - η ~ N(0, Ω)
 - $\epsilon_k \sim N(0, \sigma_k^2), k=1,2$
- Condition on index data set design (regimens and times)

Assess distribution similarities

- Merge observed (index) and simulated data sets by order statistics (rankings)
- Construct quantile-quantile plot

MD Prediction (Validation Data)

Note: Concentrations scaled by dose.

PAGE Annual Meeting

Q-Q Plot of Obs. Vs. Sim. (MD PPK)

Simulate PK Data

- Parameters estimated from index data set
- Condition on validation data set design (regimens and times)
- Construct Q-Q plot

PAGE Annual Meeting

Simulation Components: Phase III PPK Sub-study Design

- Double-blind, placebo-controlled, five-arm study
 - ➢ Placebo
 - Investigational drug (3 dose groups)
 - Active comparator
- PK sub-study sampling
 - ➤ 2 samples per visit
 - ➤ 2 visits (steady-state)
- Morning dose prior to visit
 - Time of first sample (t) is random
 - Second sample taken 1 hour later (t+1)

Sampling Time Distribution

 Model sampling times from another drug
Same patient population
Similar design
Time of first sample (t) is approx. log-normal
log(t) ~ N(0.82, 0.95)
Geom. Mean = 2.27 hr

Simulation Plan

Design components

- > Sample times: t, t+1 hr at each of 2 visits
 - Iog(t) ~ N(0.82, 0.95)
- Sample size: n=150, 225 (50, 75 pts./dose)
- Subpopulation size: p=5, 10%
 - Pop(p) ~ Bernoulli(p)

Design can only support a one-comp. modelSimulation study to evaluate:

- > Type I error rate (ie., maintain α =0.05)
- Power to detect a 40% decrease in CL/F in Pop(p)
- Bias in parameter estimates

Simulation Evaluation: Type I Error Calibration

N=300 data sets simulated under null

 $\rightarrow \Delta CL = 0\%$ for Pop(p)

- □ Fit base (reduc.) model (△CL=0%)
- □ Fit full model (△CL est.)
- □ Calculate test statistic
 > △OFV = OFV_r - OFV_f

Estimation: FOCE

Type I Error Calibration

Sample	Subpopulation	Type I Error ^a	5 th Upper Percentile ^b
Size (n)	Size (p)	(α, %)	(∆OFV _{0.95})
150 (50/dose)	0.05	17.3	8.45
	0.10	20.0	10.5
225 (75/dose)	0.05	24.0	9.25
	0.10	23.3	12.2

a. Based on $\chi^2_{1,0.95} = 3.84$

b. From empirical distribution of simulated test statistics (ΔOFV) under the null.

Simulation Evaluation: Power

□ N=300 data sets simulated under the alternative > Δ CL = -40% for Pop(p)

- \Box Fit base model (Δ CL = 0%) for each data set
- \Box Fit full model (Δ CL est.) for each data set
- Calculate power:
 - > Uncalibrated: %power = $100 \times (\# \Delta OFV > 3.84)/N$
 - > Calibrated: %power = $100 \times (\# \Delta OFV > \Delta OFV_{0.95})/N$
- □ Estimation: FOCE (NONMEM V)

Simulation Results: %Power

Sample	Subpopulation	Power (%)		
Size (n)	Size (p)	Uncalibrated ^a	Calibrated ^b	
150	0.05	86.3	73.0	
(50/dose)	0.10	98.3	91.0	
225	0.05	94.0	84.3	
(75/dose)	0.10	99.3	96.7	
a. Based on $\chi^2_{1,0.95} = 3.84$				
b Bacad an AOEV				

D. Based on $\Delta OFV_{0.95}$

Recommended Design: n=225, p=0.05

Simulation Results: %Bias

\Box %Bias = 100×($\theta_i - \theta$)/ θ
$\succ \theta_i := 1$ -cmt estimate for i th
simulated data set
$\succ \theta := 2$ -cmt true parameter
☐ Fixed effects accurately
estimated except k _a
☐ Interindividual variability
downward biased
Residual variability
upward biased

Recommended De	esign: n=225, p=0.05
	%Bias
Parameter	(mean \pm SE)
Fixed Effects	
k _a (1/hr)	132 ± 3
CL (L/hr)	1.92 ± 0.32
ΔCL	6.48 ± 0.98
V _{ss} (L)	0.197 ± 0.809
IIV Parameters	
ω-k _a	-3.73 ± 0.88
ω-CL	-33.0 + 0.5
ω-V _{ss}	-19.6 ± 0.6
Residual Var.	
σ ₁ (%CV)	37.7 ± 0.5

Conclusions

A simpler misspecified model supported by sparse data can result in accurate fixed effects estimates of key parameters

> Mean %BIAS for CL, Δ CL, and Vss <10%

□ Type I error rates for LRTs of covariate effects (e.g., ∆CL) can be inflated even though the effects may be accurately estimated

- > Estimated α 's ranged from 17.3 24.0%
- > Δ OFV critical values to maintain α =5% ranged from 8.45 12.2 (ie., greater than the Chi-square critical value of 3.84)

□ Power can be adjusted based on calibration of the ΔOFV statistics simulated under the null to maintain proper α

Final Remarks

- Simulation is a valuable tool for assessing inferential properties of PPK sub-studies
 - Assess power for significance tests on covariate effects
 - Assess effects of model misspecification (bias) on parameter estimation

□ Notable simulation features not addressed:

- Influence of uncertainty in simulation model parameter estimates
- Sensitivity to model/design assumptions
 - Patients could have different population means and/or increased IIV relative to healthy volunteers
 - Degrees of compliance could be evaluated