

UPPSALA JNIVERSITET

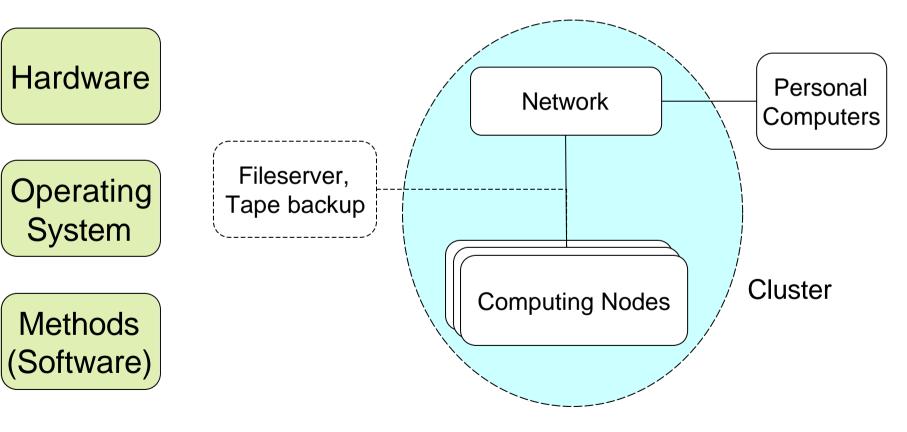
Distributed Computing under Linux

Lars Lindbom and E. Niclas Jonsson

Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Overview

- What is Distributed Computing?
 - Enabling distributed computation
- What are the potential benefits of DC in population PK/PD?
 - Example
 - Bootstrap
- Example of a small cluster
- Conclusions



What is Distributed Computing?

- It is using two workstations to solve one task and gaining 100% in speed
- It is using 1000 processors (CPUs) to solve a task that otherwise would have been (practically) impossible to solve.
- It is using available resources more effeciently

UNIVERSITET Enabling Distributed Computation

Enabling distributed computation

There is more to distributed computing than connecting computers to a common network

Operating	
System	

 Making the computing nodes talk to each other and cooperate

Methods (Software) Identifying the parts of a scientific problem that can be parallelized

What are the potential benefits of DC in population PK/PD?

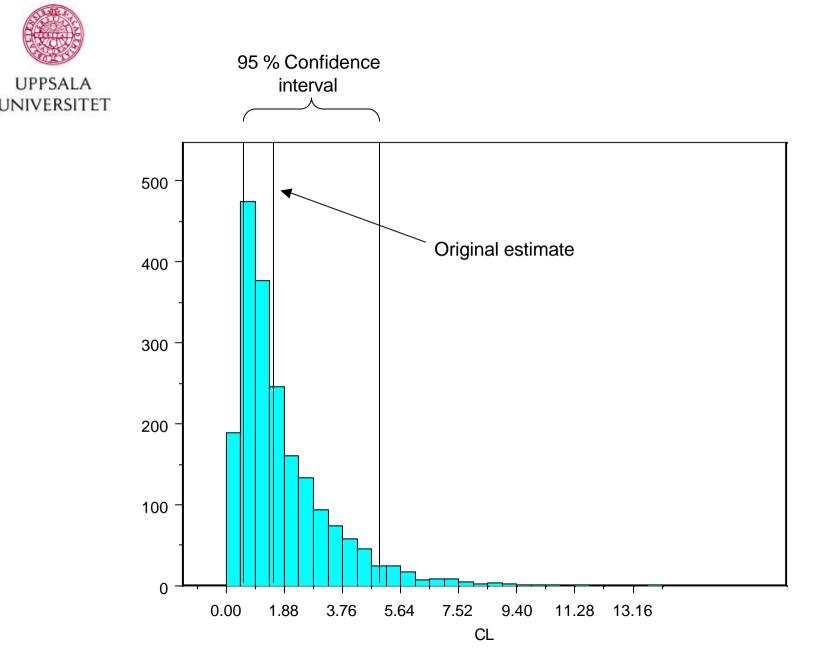
- We rely on computers to fit models to data.
 - Preferably, this task should be written for the potential use of multiple processors
 - No software support this today
- There are other tasks within a population analysis involving multiple model fits where one fit not necessarily depend on a previous.
 - Model building
 - Model validation

ET				
	Model Building			Model Validation
	Automated Stepwise Covariate Model Building			Case Deletion Diagnostics
	Model Selection using Genetic Algorithms			
				Cross Validation
		Boots	strap	
	Jackknife			
				Posterior Predictive Check
	Log-Likelihood Profiling			
	Cross Model Validation			

J.S. Urban Hjorth, Computer Intensive Statistical Methods, (Chapman & Hall, New York, 1994)

Computer intensive methods

- Often based on repetition of nearly identical tasks that can be performed independently of each other
- Often "embarrassingly parallel"

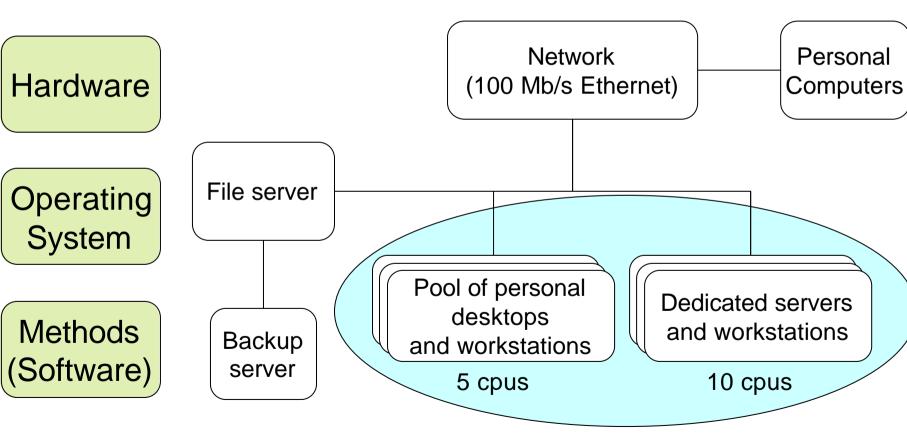

Example; The Bootstrap

- Assume that we have a model fit to a data set
- Assume further that we suspect that the true confidence interval around our estimate of clearance is non-symmetric

Bootstrap procedure:

- Draw 2000 new data sets with replacement from our data set
- Refit the model for the 2000 bootstrap samples
- Compute the confidence intervals for clearance from the distribution of the bootstrap estimates

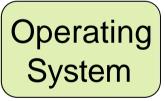
Example of a small cluster, prerequisites

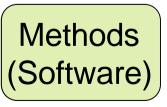

The cluster should be

- Easy to set up
- Cheap (low total cost for hardware, software and administration)
- Independent of operating system
- Independent of processor architecture
- As far as possible independent of third party software

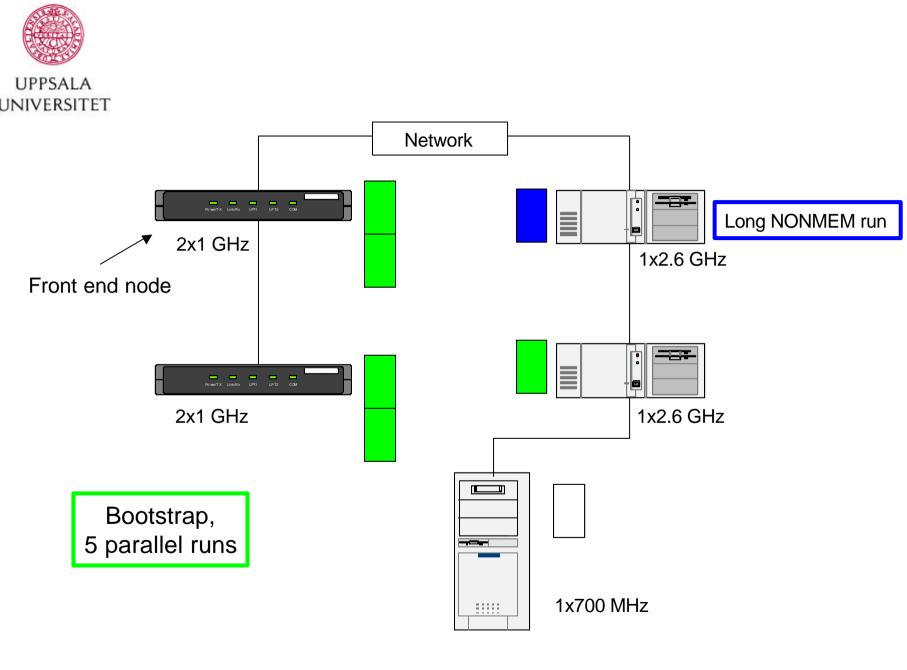
UNIVERSITET

Example of a small cluster


Computing Nodes



Cluster enabled operating system – Linux and openMosix


Open source operating system Linux – Red Hat Linux 7.3

Open source Single System Image Clustering add-on to Linux

- openMosix for kernel 2.4.19

UPPSALA UNIVERSITET

110 processes: 107 sleeping, 3 running, 0 zombie, 0 stopped CPU states: 1145.0% user, 5.8% system, 944.2% nice, 0.0% idle Mem: 514128K av, 453064K used, 61064K free, 0K shrd, 2808K buff Swap: 1052216K av, 324K used, 1051892K free 77664K cached

PID	USER	PRI	NI	SIZE	RSS	SHARE	STAT	N#	%CPU	%MEM	TIME	COMMAND
1639	grant	11	0	1236	1236	4	S	13	99.9	0.2	77:00	nonmem
2034	anja	19	19	1788	1788	488	S N	13	99.9	0.3	2:02	nonmem
2035	anja	19	19	1800	1800	500	S N	3	99.9	0.3	2:05	nonmem
2036	anja	19	19	1796	1796	496	S N	17	99.9	0.3	2:06	nonmem
2043	anja	19	19	1796	1796	492	S N	5	99.9	0.3	2:09	nonmem
2045	anja	19	19	1792	1792	496	S N	4	99.9	0.3	1:58	nonmem
2046	anja	19	19	1796	1796	496	RN	0	99.9	0.3	1:38	nonmem
2047	anja	19	19	1788	1788	492	S N	5	99.9	0.3	2:04	nonmem
2050	anja	20	19	1788	1788	492	S N	4	98.8	0.3	2:07	nonmem
1715	grant	17	0	1772	1772	460	S	19	98.6	0.3	59:51	nonmem
2049	anja	19	19	1796	1796	496	S N	18	50.3	0.3	1:29	nonmem
2044	anja	19	19	1808	1808	504	S N	18	50.2	0.3	1:50	nonmem
2048	anja	19	19	1616	1616	320	R N	0	45.6	0.3	0:53	nonmem
2051	root	9	0	2108	2108	1740	S	0	0.3	0.4	0:00	sshd
2116	lasse	9	0	1040	1040	824	R	0	0.3	0.2	0:00	mtop
2054	lasse	9	0	4212	4212	3396	S	0	0.1	0.8	0:00	gnome-terminal
1	root	8	0	476	476	420	S	0	0.0	0.0	0:08	init
2	root	8	0	0	0	0	SW	0	0.0	0.0	0:00	keventd
3	root	19	19	0	0	0	SWN	0	0.0	0.0	0:00	ksoftirqd_CPU0
4	root	19	19	0	0	0	SWN	0	0.0	0.0	0:00	ksoftirqd_CPU1

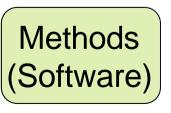
Benefits -Single NONMEM jobs on an openMosix cluster

~40 users during the past three years At each day, 5-7 people are running jobs on the cluster

Operating	g
System	

Better usage of a heterogeneous computer pool

Methods
Software)
Contraro


- The longest runs get the fastest CPUs
- Easier administration of one front end node than of many computational servers

Perl-speaks-NONMEM (PsN)

Ó	peratin	a
	System	3

Computer intensive methods using NONMEM shares many common tasks:

- Opening, reading, changing, writing to and saving NONMEM-files (model files, data files and output files)
- Running NONMEM in a controlled fashion, registering the termination and analyzing the result.

PsN is intended to provide a common programming library for method development using NONMEM

Perl-speaks-NONMEM

Perl

- Has effective handling of text files
- Has good support for invoking system calls within scripts.
- Supports parallel execution
- Is platform independent

Perl-speaks-NONMEM

PsN is object oriented

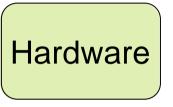
- Object classes have been created, using the NONMEM files as basis
 - Model, data and output classes.
- The classes include methods for many tasks, e.g.
 - Extracting parameter estimates or termination status
 - Splitting or resampling of data
 - Changing initial estimates, etc

T PsN based methods

Examples of methods developed using PsN

- Automated covariate model building
- Bootstrap
- Log-likelihood Profiling
- Case Deletion diagnostics

The current version of PsN is 2.0 and it can be obtained for free.



Own experiences and thoughts

Very short runs (<10 sec) do not benefit from a

The demand for system administration of a small cluster is 1/3 - 1/2 of one full time employee

distributed environment – overhead of data transfer

Operating System

between nodes is too high rating tem Other solutions for distributed computing exist –

Methods (Software) expanding area

OpenMosix scales well in this application to at least 20 CPUs

Conclusions

- Affordable, fairly simple solutions for distributed computing within the population PK/PD area exist
- A distributed computing setup is (presently) a pre-requisite for the use of computer intensive methods in population PK/PD

References

openMOSIX Homepage, http://openmosix.sourceforge.net

Red Hat Linux Homepage, http://www.redhat.com

PsN, Lars.Lindbom@farmbio.uu.se