A real time optimal design for model discrimination and parameter estimation for itraconazole

> Stephen Duffull¹ Timothy Waterhouse² Stefanie Redmann¹ John Eccleston²

1. School of Pharmacy, University of Queensland, Australia.

2. School of Physical Sciences, University of Queensland, Australia

Introduction

- Approximately 10% of patients who have cystic fibrosis (CF) develop allergic bronchopulmonary aspergillosis – an allergic reaction to antigens on the surface of the pathogen
- Itraconazole is one of the drugs of choice for the treatment of <u>Aspergillosis</u> spp infections.
- At present very little is known about the pharmacokinetics of itraconazole in patients with CF – but limited information support the use of higher doses than other patient groups
- Itraconazole has an active metabolite (hydroxyitraconazole)

Capsule or solution?

- Both a capsule and solution are available standard treatment involves the capsule only.
- Limited data suggest that the solution provides a considerably greater rate and extent of absorption than the capsule
- Also... the solution does not appear to be affected by the presence of food (cf the capsule)
- The most appropriate dosing of the solution in patients with CF has not been determined...

Aim

 To choose an experimental design (set of elementary designs) for model selection and efficient estimation of relevant parameters for itraconazole and hydroxyitraconazole

Prior information

- Data were available from 4 studies of itraconazole and 1 described both itraconazole and hydroxyitraconazole
 - Koks et al. Ther Drug Monit 2003;25:229-233
 - Barone et al. Antimicrob Agents Chemother. 1993;778-784
 - FDA web site (x 2 documents)
- The model for itraconazole and hydroxyitraconazole were described by 2 linked compartmental models
- Data from Barone et al., suggested that the elimination of itraconazole from the central compartment was non-linear (this has been supported in other studies)

Clinical application

- A maximum of 30 patients are to be recruited
- A maximum of 4 samples per patient per occasion
- The study would be a single dose cross-over with capsule 200 mg followed by solution 200 mg
- A minimum washout period of 72 hours would be observed

S Duffull, All rights reserved

The ODE's

$$\frac{dA_{1}(t)}{dt} = -F_{12}k_{a}A_{1}(t) - F_{14}k_{a}A_{1}(t) \qquad (1)$$

$$\frac{dA_{2}(t)}{dt} = F_{12}k_{a}A_{1}(t) + \frac{Q}{V_{3}}A_{3}(t) - \frac{Q}{V_{2}}A_{2}(t) - F_{24}\frac{CL_{24}}{V_{2}}A_{2}(t) \\
+ \begin{cases} -F_{20}\frac{CL_{2}}{V_{2}}A_{2}(t) & \text{Model 1} \\ -F_{20}\frac{V_{\text{max}}}{K_{\text{m}} + A_{2}(t)/V_{2}}A_{2}(t) & \text{Model 2} \end{cases} \qquad (2)$$

$$\frac{dA_{3}(t)}{dt} = \frac{Q}{V_{2}}A_{2}(t) - \frac{Q}{V_{3}}A_{3}(t) \qquad (3)$$

$$\frac{dA_{4}(t)}{dt} = F_{14}k_{a}A_{1}(t) + F_{24}\frac{CL_{24}}{V_{2}}A_{2}(t) - \frac{CL_{4}}{V_{4}}A_{4}(t) \qquad (4)$$

PK profiles

Design – the information matrix

• The information matrix was the same as that provided by Retout et al and was assumed to take the form:

$$M_F(\boldsymbol{\psi}, \boldsymbol{\xi}_q) \approx \frac{1}{2} \begin{bmatrix} A(E, V) & C(E, V) \\ C^T(E, V) & B(E, V) \end{bmatrix}$$

where ψ is a vector of population parameters (fixed and variance of the random effects), ξ_q is the qth elementary design and *C*(*E*, *V*) is a matrix of zeros

Retout et al., Stat Med 2002;21:2623-2639

Design – multiple responses (parent & metabolite)

 Multiple responses (that conform to the same likelihood) for fixed effects model has been described by summing the information matrices over the responses (Draper and Hunter):

$$M_F(\mathbf{\theta}, \mathbf{\xi}) = \sum_{a=1}^r \sum_{b=1}^r \sigma^{ab} F_a^T F_b$$

- Where F is a vector of first partial derivatives of the response to the fixed effects parameters (θ)
- We extended this form to include fixed and random effects and simplified its computation by using only a single common residual variance

Draper and Hunter. Biometrika 1966;53:525-533

Design – competing models (linear, non-linear, capsule, solution)

- Estimation
 - A compound criterion has been described for estimating parameters over a number of competing models (Atkinson & Cox) $P(\psi^1, \psi^2, \Xi) = \left| M_F^1(\psi^1, \Xi) \right|^{1/p_1} \left| M_F^2(\psi^2, \Xi) \right|^{1/p_2}$
- Discrimination
 - T-optimality has been described by Atkinson & Fedorov but is highly computationally intensive and difficult to implement
 - Waterhouse et al showed that the compound design worked well for discrimination for some models – this was used here

Atkinson & Cox. J R Stat Soc Ser B 1974;36:321-348 Atkinson & Fedorov. Biometrika 1975; 62:57-70 Waterhouse et al. Research Report 106: Centre for Statistics, UQ

Execution of optimization

- The design was simplified by assuming that:
 - capsules and solution only differed in terms of the rate and extent of absorption,
 - the non-linear and linear models differed only in terms of elimination from the central compartment and all other parameters were common.
- Imposed design constraints meant that CL_{24} , V_3 and Q were not able to be estimated (and were fixed)
- The design was optimized using **POPT.m** with a simulated annealing algorithm (taking 7 days)

Design

		Capsule		Solution	
$\operatorname{Group}_{(q)}$	N_q	Elementary design ξ_q^c (hrs:mins)	Sampling window (hrs)	Elementary design ξ_q^s (hrs:mins)	$egin{array}{c} { m Sampling} \ { m window} \ { m (hrs)} \end{array}$
1	10	1:14 8:56 25:49 51:45	$\begin{array}{ccc} 0.1 \rightarrow & 3.0 \\ 7.0 \rightarrow 10.0 \\ 24.0 \rightarrow 27.0 \\ 50.0 \rightarrow 53.0 \end{array}$	0:17 3:55 3:56 3:56	$\begin{array}{rrrr} 0.1 \rightarrow & 1.0 \\ 3.0 \rightarrow & 3.5 \\ 3.5 \rightarrow & 4.0 \\ 4.0 \rightarrow & 4.5 \end{array}$
2	10	6:13 9:50 29:29 29:29	$\begin{array}{cccc} 5.0 \rightarrow & 8.0 \\ 8.0 \rightarrow 11.0 \\ 28.0 \rightarrow 29.5 \\ 29.5 \rightarrow 31.0 \end{array}$	0:18 4:06 4:06 72:00	$\begin{array}{rrrr} 0.1 \rightarrow & 1.0 \\ 3.0 \rightarrow & 4.0 \\ 4.0 \rightarrow & 5.0 \\ 69.0 \rightarrow 72.0 \end{array}$
3	10	8:08 28:00 72:00 72:00	$\begin{array}{c} 7.0 ightarrow 10.0 \ 26.5 ightarrow 29.5 \ 69.0 ightarrow 70.5 \ 70.5 ightarrow 72.0 \end{array}$	0:17 4:22 27:08 72:00	$\begin{array}{ccc} 0.1 \rightarrow & 1.0 \\ 3.0 \rightarrow & 6.0 \\ 26.0 \rightarrow 29.0 \\ 69.0 \rightarrow 72.0 \end{array}$

Design evaluation

- The compound optimal design was 96.4 and 95.9% as efficient as the optimal design for either linear or non-linear model alone
- Simulation 100 data sets were simulated under the optimal design from each model and both models fitted to the data using NONMEM (FOCEI)
 - In 100% of data sets the NONMEM run converged successfully
 - In 74% of the data sets simulated under the linear model, the correct model was preferred
 - In 100% of the data sets simulated under the nonlinear model, the correct model was preferred
 - The standard error estimates from **POPT.m** were close to the empirical standard deviation of parameter estimates from the NONMEM estimation runs, except for ka and ω_{ka} which differed by 2-fold

Discussion

- Optimal design procedures can be undertaken under the constraints imposed by time and clinical considerations
- Designs may be optimized over relatively complex model features including:
 - Multiple competing models
 - Models that can be defined only as ODEs
 - Models that involve multiple response types
- The compound design criterion appears to perform well for model discrimination and is relatively efficient for estimation
- Joint design windows can be computed efficiently to produce clinically meaningful designs
- Optimality is a real alternative to simulation for designing popPK and popPKPD studies

We await the results of the actual study...

