Accurate Maximum Likelihood Estimation for Parametric Population Analysis

Bob Leary UCSD/SDSC and LAPK, USC School of Medicine

Why use parametric maximum likelihood estimators?

• Consistency:

$$\hat{\theta}_{ML} \rightarrow \theta_{TRUE}$$
 as $N \rightarrow \infty$

• Asymptotic Efficiency:

$$\frac{\operatorname{var}\hat{\theta}_{ML}}{\operatorname{var}\hat{\theta}_{OTHER}} \leq 1 \quad \text{as} \quad N \to \infty$$

• Well-developed asymptotic theory allows hypothesis testing

But most current parametric methods only maximize approximate likelihoods (MAL)

• F.O.

• F.O.C.E

• Laplace

MAL estimation can cause serious degradation of statistical peformance

• Not Consistent:

$$\hat{\theta}_{MAL} \rightarrow \theta_{TRUE} + \text{bias as } N \rightarrow \infty$$

• Not Asymptotically Efficient:

$$\frac{\operatorname{var}\hat{\theta}_{MAL}}{\operatorname{var}\hat{\theta}_{ML}} > 1 \quad \text{as} \quad N \to \infty$$

• No asymptotic theory – using ML asymptotic theory for MAL case can be VERY misleading!

Statistical efficiency definition

• Relative statistical efficiency:

statistical efficiency
$$(\hat{\theta}_{MAL}) = \frac{\operatorname{var} \hat{\theta}_{ML}}{\operatorname{var} \hat{\theta}_{MAL}}$$

• Statistical efficiencies can be evaluated by Monte Carlo simulations

Simulation conditions

• Simple 1-compartment IV bolus model, two random effects V and K

 $C(t) = (1/V)e^{-Kt}$

- $(V, K) \sim N(\mu, \Sigma)$, 25% inter-individual relative standard deviation in each of V, K.
- $Y_i = C(t)(1+e_i)$, $e_i \sim N(0,\sigma^2)$, intra-individual relative $\sigma = .10$, 2 observations/subject (sparse data)

Approximate likelihoods can destroy statistical efficiency

FOCE does better, but still has <40% efficiency relative to ML

Comparative statistical efficiencies, 2 obs/subject, 10% observational error

Approximations add random error

$$\hat{\theta}_{MAL} = \hat{\theta}_{ML} + (\hat{\theta}_{MAL} - \hat{\theta}_{ML})$$

$$\operatorname{var}(\hat{\theta}_{FO} - \hat{\theta}_{ML}) = 80 \operatorname{var}(\hat{\theta}_{ML})$$

$$\operatorname{var}(\hat{\theta}_{FOCE} - \hat{\theta}_{ML}) = 1.2 \operatorname{var}(\hat{\theta}_{ML})$$

PEM Estimation

- Simplest case just random effects (no fixed effects related to covariates)
- Population distribution of random effects vector η at the lowest level is N(μ, Σ), so parameters to be estimated are θ = (μ, Σ)
- We are given likelihood functions $l_i(y_i | \eta, \sigma^2)$

PEM algorithm

• For current population distribution iterate N(μ^{j}, Σ^{j}), compute posterior distributions $f_{i}^{post} = \frac{l_{i}(y_{i} | \eta) f(\eta | \mu_{j}, \Sigma_{j})}{Q_{i}}$

• Compute $(\mu^{j+1}, \Sigma^{j+1})$ as the mean and covariance of the posterior mixture distribution $1 \sum_{n=1}^{N} 2^{n}$

$$f^{post} = \frac{1}{N} \sum_{i=1}^{N} f_i^{post}$$

Likelihoods

- Likelihood of j+1 iterate is $\log L(\mu^{j+1}, \Sigma^{j+1}) = \sum_{i=1}^{N} \log Q_i$
- (Schumitzky, 1993) showed

$$\log L(\mu^{j+1}, \Sigma^{j+1}) \geq \log L(\mu^j, \Sigma^j)$$

Likelihood convergence – FOCE vs PEM

Numerical integration methods

$$Q_i = \int l_i(y_i \mid \eta) f(\eta \mid \mu_j, \Sigma_j) d\eta$$

$$= \frac{1}{M} \sum_{k=1}^{M} l_i(y_i \mid \eta_k) \text{ for M samples } \eta_k$$

 η_k can be Monte Carlo (pseudorandom) samples, Gauss-Hermite grid points, or "quasi random" samples (low discrepancy sequences)

1000 pseudo- vs quasi random samples from a bivariate N(0,I)

 $\sum_{pseudo} = \frac{1.065 - 0.064}{-0.064 0.983}$ Integration error~1/M^{1/2}

Recent blind trial Pop PK method comparison (Girard et al, 2004)

• Model

$$\begin{aligned} response &= E_0 e^{\eta_1} + \frac{E_{\max} e^{\eta_2} dose}{ED50 * f(sex) e^{\eta_3} + dose} \\ f(male) &= 1, f(female) = \theta \\ E_0 e^{\eta_1} &= e^{\log E_0} \end{aligned}$$

• Estimate all 8 parameters with standard errors and p-value for null hypothesis $\theta=1$

Profile likelihood method

Conclusions

- Likelihood approximations such as FO and FOCE significantly degrade statistical results, particularly in the sparse data case
- Accurate likelihood methods such as PEM perform much better in the sparse data case than approximate methods
- Accurate likelihood methods such as PEM are feasible with current computational technology