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Why use parametric maximum 
likelihood estimators?

• Consistency:

• Asymptotic Efficiency:

• Well-developed asymptotic theory allows 
hypothesis testing
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But most current parametric methods only 
maximize approximate likelihoods (MAL)

• F.O.

• F.O.C.E

• Laplace



MAL estimation can cause serious 
degradation of statistical peformance

• Not Consistent:

• Not Asymptotically Efficient:

• No asymptotic theory – using ML asymptotic 
theory for MAL case can be VERY misleading!
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Statistical efficiency definition

• Relative statistical efficiency:

• Statistical efficiencies can be evaluated by 
Monte Carlo simulations
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Simulation conditions

• Simple 1-compartment IV bolus model, two 
random effects V and K 

C(t) = (1/V)e-Kt

• (V, K) ~ N(µ, Σ), 25% inter-individual relative 
standard deviation in each of V, K.

• Yi=C(t)(1+ei), ei~N(0,σ2), intra-individual relative 
σ=.10,   2 observations/subject (sparse data)



Approximate likelihoods can 
destroy statistical efficiency 
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FOCE does better, but still has 
<40% efficiency relative to ML
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Comparative statistical efficiencies,  
2 obs/subject, 10% observational 

error



Approximations add random error 
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PEM Estimation

• Simplest case – just random effects (no 
fixed effects related to covariates)

• Population distribution of random effects 
vector η at the lowest level is N(µ, Σ), so 
parameters to be estimated are θ = (µ, Σ)

• We are given likelihood functions 
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PEM algorithm

• For current population distribution iterate 
N(µj, Σj), compute posterior distributions

• Compute (µj+1, Σj+1) as the mean and 
covariance of the posterior mixture 
distribution
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Likelihoods

• Likelihood of j+1 iterate is

• (Schumitzky, 1993) showed 
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Likelihood convergence – FOCE 
vs PEM



Numerical integration methods
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 can be Monte Carlo (pseudorandom) samples, 
Gauss-Hermite grid points, or "quasi random" samples
(low discrepancy sequences)
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1000 pseudo- vs quasi random 
samples from  a bivariate N(0,I)
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Recent blind trial Pop PK method 
comparison (Girard et al, 2004)

• Model

• Estimate all 8 parameters with standard 
errors and p-value for null hypothesis θ=1
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Profile likelihood method



Conclusions
• Likelihood approximations such as FO and 

FOCE significantly degrade statistical results, 
particularly in the sparse data case

• Accurate likelihood methods such as PEM 
perform much better in the sparse data case 
than approximate methods

• Accurate likelihood methods such as PEM are 
feasible with current computational technology
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