# MODELING OF DRUG- AND SYSTEM-RELATED CHANGES IN BODY TEMPERATURE: application to drug-induced hypothermia, long-lasting tolerance and diurnal variation

Sandra A.G. Visser<sup>1</sup>, Björn Sällström<sup>1</sup>, Tomas Forsberg<sup>2</sup>, Bert Peletier<sup>3</sup>, Johan Gabrielsson<sup>1</sup> DMPK & BAC and <sup>2</sup>General Pharmacology, AstraZeneca R&D Södertälje, Sweden <sup>3</sup>Mathematical Institute, Leiden University, Leiden, The Netherlands

#### **RESULTS: DIURNAL VARIATION**



The objective is to develop a pharmacokinetic-pharmacodynamic model for the characterization of clomethiazole (CMZ) -induced hypothermia(1) with components for complete tolerance development, diurnal variation in baseline and influence of handling.

## METHODS AND EXPERIMENTAL DESIGN

- CMZ-induced hypothermia and onset of tolerance was characterized using body temperature telemetry in male Sprague Dawley rats after subcutaneous (sc) bolus administration of 0, 15, 150, 300 and 600 µmol·kg<sup>-1</sup> and 24-h continuous administration of 0, 20 and 40 µmol·kg<sup>-1</sup>·h<sup>-1</sup> using osmotic pumps.
- The duration of tolerance was studied by repeated injections of 300 µmol·kg<sup>-1</sup> with intervals ranging from 3 to 32 days.
- Plasma exposure to CMZ was obtained in satellite groups of catheterized rats.



- Diurnal variation in baseline is described by a novel feedback model with a squared-wave function for the external light schedule. Temporary increase in temperature due to handling is described by an empirical exponential function.
- CMZ has dual actions:
- 1. CMZ modulates body temperature via  $T_{ref}$  following an inhibitory  $S_{max}$  function (S₁).
- 2. CMZ removes an unknown modulator (Q<sub>0</sub>) following a second S<sub>max</sub> function (S<sub>2</sub>), which is cascaded through a number of transit compartments<sup>(2)</sup> to Q<sub>4</sub>.
  - $Q_4$  diminishes the effective stimulus (S<sub>1</sub>) at  $T_{ref}$  resulting in a tolerance.
  - Q<sub>0</sub> has a turnover half-life of several days and the transit time (t) of the cascaded stimulus is in the range of hours resulting in a fast but not direct onset and a long duration of tolerance.
- Set-point temperature model<sup>(3)</sup> is used because it showed to be more flexible than an indirect response model.
  - For reasons of parameter identification, the set-point model is reduced to three parameters: A,  $k_{in}$  and  $\gamma$  by rescaling temperature. Baseline was T<sub>min</sub> is 31°C. fitted before rescaling the data following:





Time (h) ntration time courses of CMZ Figure 2. Averaged and fitted conce

 A two-compartment kinetic model incorporating Michaelis-Menten elimination<sup>(4)</sup> described the concentration-time courses of both s.c. injections and via constant osmotic pump delivery

 $K_a$  estimate for 15 µmol/kg dose. The  $K_a$  estimates for the 150, 300, 600 µmol/kg sc doses and 20, 40 µmol/kg/h pump doses were 10, 20, 40, 68 and 138 times smaller, respectively, due to decreased pH in injection solution. i.i: inter-individual variability

33

0

24

36



Time (h) Figure 3. Individual diurnal variation in temperature and influence of handling by s.c. injection or osmotic pump implantation The applied feedback model is a general model to describe asymmetric diurnal variations

in baseline of various pharmacodynamic endpoints such as body temperature. · Handling of animals resulted in a temporary increase of temperature

#### RESULTS: HYPOTHERMIA AND ONSET OF TOLERANCE



Dose-dependent hypothermia after s.c. injection and constant

AstraZeneca

administration could only be described when tolerance was induced with a delay of 365 min. This delay was estimated using 4 transit-comp.

 $k_{outQ}$  was fixed at 0.022 days<sup>-1</sup> (half life of ~32 days) in single dose analysis. Table 3. Drug- and system-parameter estimates

| Parameter          | Unit              | Estimate | ± | SE     | i.i. (%) |
|--------------------|-------------------|----------|---|--------|----------|
| S <sub>max,1</sub> | -                 | 1        |   | fixed  | -        |
| SC <sub>50,1</sub> | μΜ                | 27       | ± | 1      | 125      |
| SC <sub>50,2</sub> | μΜ                | 5.2      | ± | 0.7    | 11       |
| <b>k</b> in        | °C·min⁻¹          | 3.9      | ± | 0.3    | -        |
| A                  | min <sup>-1</sup> | 0.017    | ± | 0.0001 | 39       |
| γ                  | -                 | 0.7      | ± | 0.01   | 38       |
| k <sub>outQ</sub>  | day <sup>-1</sup> | 0.022    |   | fixed  | -        |
| τ                  | min               | 91       | ± | 1      | 8        |

Figure 4. Observations, population (green) and individual (black) fits for 6 representative individuals. Gray bar represents inplementation duration of osmotic pump. Blue line represents plasma concentration (right y-axis)

# **RESULTS: DURATION OF TOLERANCE**



Figure 6. Development of tolerance is independent of the administration type. After s.c. bolus of 300 µmol/kg or s.c osmotic pump administration, complete tolerance was present.

Time (h) The turnover rate of the  $Q_0$  was estimated by fitting repeated injections of 300 µmol·kg<sup>-1</sup> with intervals ranging from 3 to 32 days. Turnover rate constant was 0.015 ± 0.001 (10%) day-1, yielding a half life of turnover of 46 days

60 72

48

### **CONCLUSIONS AND PERSPECTIVES**

- A novel feedback model was applied to asymmetric diurnal variation in temperature
- A tolerance model utilizing transit compartments described the onset and duration of tolerance. The half-life of return of response was estimated at 46 days.
- Drug induced hypothermia during continuous, acute or repeated administration was successfully described by the multi-component model
- The predictive properties of the model will be challenged by data with repeated injections at three occasions at 1, 15, and 32 days.