
Optimal design means the resulting experiment will lead to 
the most accurate model parameter estimates       .

The Cramer-Rao inequality tells us that an asymptotic lower 
bound on parameter variances is the Fisher Information 
Matrix (FIM):

Using the asymptotic FIM to compare different designs is 
possible.
However, using the asymptotic FIM to predict actual values (not
the trends) of estimated parameter variances may not be reliable.
Asymptotic variance values should be used as a guide to 
investigate designs.
Conclusions should be drawn from a combination of asymptotic 
variance values and simulation studies. 
Note that the asymptotic FIM variance values can give us no 
information about the likely bias in the parameter estimates; 
simulation studies must be done to examine bias.
Previous work found no difference between asymptotic FIM and 
simulation for fixed effects [3].  Differences found here are 
assumed to be model and design dependent.
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In previous work, we evaluated computed population optimal 
designs via simulation studies [1].    Others have evaluated optimal 
designs without simulation by looking directly at the Fisher 
information matrix (FIM) and the predicted parameter variances 
(the diagonal elements of the FIM) [2].  However, the FIM is only 
an asymptotic lower bound on the covariance matrix of the model 
parameter values and it is not clear how well the FIM predicts 
experimentally measured variances in studies where the number of
samples and number of individuals are not close to the asymptotic 
limit.  In this work, we compare population D-optimal 
pharmacokinetic (PK) designs using both the asymptotic Fisher 
information matrix (FIM) predicted model parameter variances and
model parameter variances derived from simulation studies.  
Previous work has looked at this problem for one specific model 
[3], here we expand this comparison and look at three separate 
models.
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ResultsResults

Why is optimal design important?

What is optimal design?

What do optimal design calculations tell us?

θ̂

Time
Best guess of 
parameter values

Covariates

Using D-optimality we minimize the FIM with respect to time 
and/or covariates to get a minimal asymptotic lower bound
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Models are complex
Parameters are hard to estimate
Data is often quite sparse
Poor designs lead to poor parameter estimates
In drug development, costs are huge:

$500-$800 Million per new chemical entity.

ObjectivesObjectives

Given the log-likelihood of a particular model L(θ), prior 
information of parameter values, and specific design criteria, 
the FIM can be caluculated, after linearizing the model about 
its random effect parameters, as:
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Optimal design calculations result in asymptotic values for the 
model parameter covariances (the optimal FIM).
Population PK-PD studies are generally not close to the 
asymptotic limit of samples per individual and number of 
individuals.
So what can these asymptotic values tell us?
To test this we compare the asymptotic covariance values to 
parameter covariances computed from replicate simulation 
studies.

MethodsMethods
Computed 5-7 different optimal designs for each of three 
separate population PK models taken from the literature.  

From each optimal design computed, we calculate the 
predicted asymptotic percent coefficients of variation (CVs) 
for all model parameters, θ, from the FIM:

Next, using NONMEM, we simulate numerous replicate 
experiments from the optimal designs and compute the 
simulated parameter CVs for each optimal design.  
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We treat the simulated CVs as the true values that the 
asymptotic CVs are trying to predict. 
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Theophylline
Model is one-compartment with linear absorption and 
constant measurement error variance (Beal and Sheiner 1992).
Population parameters are log-normally distributed.
Samples per individual in different design strategies: A-1, B-
2, C-3, D-3, E-11
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Fixed effects Random effect variances

General trends for asymptotic (∗) and Simulated (Ο) CV 
values are similar.

HIV viral load model

Model comes from Wu and Ding, 1999.
Population parameters are normally distributed.
Samples per individual in different design strategies: A-1, 
B-2, C-3, D-4, E-4, F-(3-9), G-(3-9)
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Asymptotic CV 
values (∗) tend to 
underestimate the 
CV values of 
simulation 
experiments (Ο)
in both the fixed 
and random 
effects.

Ketorolac
Model is two-compartment with first-order absorption and 
proportional measurement error variance (Mandema and 
Stanski, 1996).
Population parameters are log-normally distributed. 
Samples per individual in different design strategies: A-1, 
B-2, C-3, D-5, E-15

Asymptotic CV 
values (∗) in
designs with only 
one sample per 
individual 
(strategy A) can 
greatly 
underestimate the 
CV values of 
simulation 
experiments (Ο).[ ] ( ) 1),,(ˆ Cov −≥ atFIM θθ

Fixed effects Random effect variances

Random effect variancesFixed effects
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