Non-linear mixed-effects models for tests of interaction or of lack of interaction in cross-over and parallel pharmacokinetic studies: application to the test of interaction between protease inhibitors and nucleoside analogs in HIV patients

Xavière Panhard and France Mentré

INSERM U738-CHU Bichat Claude Bernard

Context (1) : tests in PK cross-over trials

Tests comparing PK parameters between the 2 treatment arms

- interaction trials \rightarrow comparison test
- bioequivalence trials \rightarrow equivalence test

Standard approach (FDA 1999, EMEA 1998 and 2000)

Estimate the $A U C$ by NC approach

- comparison: paired Student or Wilcoxon test on $\log (A U C)$
- equivalence (Average Bioequivalence, FDA 2000)
- Schuirmann's two one-sided test (TOST) on $\log (A U C)$
- 1 - estimate the $\mathrm{Cl}_{90 \%}$ of $\mu_{\mathrm{AUC}}^{(T)}-\mu_{\text {AUC }}^{(R)}$

2 - compare this $\mathrm{Cl}_{90 \%}$ to [-0.2;0.2]
Drawback:

- large number of samples per subject (between 10 and 20)
- underlying PK model not taken into account

Context (2): anti-retroviral drugs of HIV infection

Anti-retrovirals prescribed in HIV infection

- combination of molecules with numerous interactions
- very high inter and intra-patient variability

Plan

1- evaluation of the type I error and power without modelling IOV

2- evaluation of the impact of modelling IOV
3- application to the Puzzle II study
4- evaluation of the randomization test on the interaction of ZDV on NFV/M8

Methods (1) - Model and notations
Subject $i(i=1, \ldots, N)$, sampling times $t_{j}(j=1, \ldots, n)$
$y_{i, j}^{(k)}$: observation of sujet i at time t_{j} for treatment $k(k=R, T)$

$$
y_{i, j}^{(k)}=f\left(t_{j}, \phi_{i}^{(k)}\right)+\varepsilon_{i, j}^{(k)}
$$

ε : measurement error, gaussian with null mean and variance:

$$
\sigma_{i, j}^{(k) 2}=\sigma^{2}\left(a+f\left(t_{j}, \phi_{i}^{(k)}\right)\right)^{2}
$$

Individual parameters

$$
\phi_{i}^{(k)}=\mu+\beta \mathbb{1}_{k=T}+\eta_{i}+c_{i}^{(k)}
$$

$\eta_{i} \leadsto \mathcal{N}(0, \Gamma), c_{i}^{(k)} \leadsto \mathcal{N}(0, \Psi)$
Γ and Ψ often supposed diagonal
$\log (A U C)$ is a component of $\phi \rightarrow \phi_{\text {Auc }}$

Methods (2) - Comparison tests

$$
H_{0}:\left\{\mu_{\text {AUC }}^{(T)}-\mu_{\text {AUC }}^{(R)}=0\right\} \Leftrightarrow\left\{\beta_{\text {AUC }}=0\right\}
$$

Standard tests (guidelines)

- separate analysis of each PK profile
- estimation of the individual NC $A U C$
- paired Student and Wilcoxon comparing NC $\log (A U C)_{i}^{(k)}$

Development of 4 tests based on NLMEM

- Global tests
- joint analysis of the two treatment groups

1 - LRT, comparing model with $\beta_{A U C}=0$ and model with $\beta_{A U C}$ estimated
2 - extension of the Wald test comparing $\beta_{A U C}$ to 0

- EB tests
- separate analysis of each treatment group
- estimation of the EB $\theta_{i}^{(k)}$
- Student and Wilcoxon comparing the EB $\theta_{\text {AUC }, i}^{(k)}$

Methods (3) - Equivalence tests

$H_{0}:\left\{\mu_{\text {AUC }}^{(T)}-\mu_{\text {AUC }}^{(R)} \leq-\delta\right.$ or $\left.\mu_{\text {AUC }}^{(T)}-\mu_{\text {AUC }}^{(R)} \geq \delta\right\} \Leftrightarrow\left\{\beta_{\text {AUC }} \leq-\delta\right.$ or $\left.\geq \delta\right\}$
Typically $\delta=0.2\left(e^{-\delta}=0.8\right.$ and $\left.e^{\delta}=1.25\right)$
Standard tests (guidelines)

- Student TOST on NC $\log (A U C)_{i}^{(k)}$
- adaptation of TOST to the Wilcoxon test on NC $\log (A U C)_{i}^{(k)}$ (Chow and Liu, 1999)
Global tests
- no simple extension of the LRT for equivalence
- Wald: same principle as for the TOST using $\mathrm{Cl}_{90 \%}$ of $\beta_{\text {Auc }}$ (SE of $\beta_{\text {Auc }}$ is estimated by nlme)
EB tests
- adaptation of the standard tests to the $\theta_{\mathrm{AUC}, i}^{(k)}$

Evaluation by simulation - Theophylline

Population PK on the original dataset

- $N=12$ subjects, $n=10$ samples per subject
- one compartment, $1^{\text {st }}$ order absorption and elimination
- parametrization on $\log \left(k_{a}\right), \log (A U C), \log (V)$

Estimated values used to simulate concentration data

- fixed effects: $\hat{\mu}_{k_{a}}=0.39, \hat{\mu}_{A U C}=4.61$ and $\hat{\mu}_{V}=-0.73$
- combined error model: $a=1, \sigma=0.1$
- SD of the random effects for $\log \left(k_{a}\right), \log (A U C)$ and $\log (V)$ resp.
- IIV: 0.10, 0.20 and 0.20
- IOV: 0.05, 0.10 and 0.10

Simulated designs: combinations of $N=12,24$ and $40, n=10,5$ and 3

Results (1) - Type I error

Comparison

Results (1) - Type I error

Comparison

Results (1) - Type I error

Comparison

$+:$ LRT $\quad:$ Student EB $\square:$ Student NC $\quad \times$: Wald \quad : Wilcoxon EB \triangle : Wilcoxon NC

Results (1) - Type I error

Comparison

Equivalence

$+:$ LRT \quad : Student EB \square : Student NC
x : Wald
Δ : Wilcoxon EB \triangle : Wilcoxon NC

Results (1) - Type I error

Comparison

Equivalence

Results (1) - Type I error

Comparison

Equivalence

Results (2) - Power

Comparison

$$
\begin{array}{llll}
+: \text { LRT } & \square: \text { Student EB } & \square: \text { Student NC } & -: \\
\times: \text { Wald } & \mathbf{\Delta}: \text { Wilcoxon EB } & \triangle: \text { Wilcoxon NC } & \boxed{:} \\
& & & n=12, J=10 \\
& & n=40, J=3
\end{array}
$$

Results (2) - Power

Comparison

$$
\begin{array}{llll}
+: \text { LRT } & \square: \text { Student EB } & \square: \text { Student NC } & -: \\
\times: \text { Wald } & \mathbf{\Delta}: \text { Wilcoxon EB } & \triangle: \text { Wilcoxon NC } & \boxed{:} \\
& & & n=12, J=10 \\
& & n=40, J=3
\end{array}
$$

Results (2) - Power

Comparison

$$
\begin{array}{llll}
+: \text { LRT } & \square: \text { Student EB } & \square: \text { Student NC } & -: \\
\times: \text { Wald } & \Delta: \text { Wilcoxon EB } & \triangle: \text { Wilcoxon NC } & -: \\
& & & n=24, J=5 \\
& & -: & n=40, J=3
\end{array}
$$

Results (2) - Power

Comparison

Equivalence

- : $n=12, J=10$
- : $\quad n=24, J=5$
— : $n=40, J=3$

Results (2) - Power

Inserm

Results (2) - Power

Equivalence

- : $n=12, J=10$
-: $n=24, J=5$
— : $n=40, J=3$

Results (3)

- good performance of EB tests
- inflation of the type I error of global tests at finite distance
- the 2 global tests are the most powerful
\rightarrow Panhard X, Mentré F. Evaluation by simulation of tests based on non-linear mixed-effects models in pharmacokinetic interaction and bioequivalence cross-over trials. Stat Med 2005

Impact of modelling IOV

- same PK model (theophylline)
- only designs with 240 samples per subject
- for each parameter, estimation of :
- IIV
- IOV
- an interaction effect
- evaluation of type I error and power (only for interaction)

Results

Type I error
Comparaison

Equivalence

Power

- evaluated for $e^{\delta}=0.8,0.9,1.1$ and 1.25
- good power for the 2 tests
- 1 to 2% inferior to that obtained without modelling IOV

Application: ANRS 107-Puzzle II

Prospective, open, multicenter trial in HIV+ patients:

- under stable treatment for at least 1 month
- with a viral load > 10000 copies $/ \mathrm{mL}$

PK substudy: 2 period cross-over in 10 patients

- from inclusion to W2 : atazanavir (ATZ)
- from W3 to W26 : ATZ + tenofovir (TFV)

Objective: evaluate the interaction of TFV on ATZ PK Samples taken at W2 and W6: 1, 2, 3, 5, 8, and 24 h after drug intake

Population PK of atazanavir (1)

Objectives

- build the PK model, taking the 2 periods into account
- estimate IIV and IOV
- test the interaction effect of TFV on the PK parameters

PK model

- one compartment model with zero order absorption and $1^{\text {st }}$ order elimination
- parametrized in $\log \left(T_{a}\right), \log (C l / F)$ and $\log (V / F)$
- homoscedastic variance

$$
f(\theta, t)=\frac{F D}{T_{a} C l}\left(\left(1-e^{-\frac{C l}{V} t}\right) \mathbb{1}_{t<T_{a}}+\frac{e^{-\frac{C l}{V} \tau \mathbb{1}_{t<T_{a}}}\left(1-e^{-\frac{C l}{V} T_{a}}\right) e^{-\frac{C l}{V}\left(t-T_{a}\right)}}{\left(1-e^{-\frac{C l}{V} \tau}\right)}\right)
$$

Resultats - population PK

	Mean	SE	IIV (\%)	IOV (\%)
$\log \left(T_{a}\right)$	1.32	0.10	21.7	0
$\beta_{T_{a}}$	0.306	0.10	-	-
$\log (A U C)$	10.7	0.17	49.2	0
$\beta_{A U C}$	-0.380	0.090	-	-
$\log (V / F)$	4.01	0.20	0	53.5
$\beta_{V / F}$	0.159	0.003	-	-

Significant interaction effect (Wald test) of TVF on:

- $\log (A U C): \mathrm{p}<10^{-4}$
- $\log \left(T_{a}\right): \mathrm{p}=0.0019$

Equivalence between the 2 treatment groups for:

- $\log (V / F): 90 \% \mathrm{Cl}$ for $\beta_{V / F}=[-0.335 ; 0.652]$

Concentrations and predicted curves

Test of interaction in usual population PK analyses

Inflation of the type I error of the test of binary covariates

- already showed by several authors for comparison tests
\rightarrow no reevaluation by simulation
- among correction methods: randomization tests
- possible extension to absence of interaction

Interaction of ZDV on the PK of NFV/M8 (1)

- Cophar I - ANRS 102 study: prospective, open, multicenter trial in HIV+ patients
- under stable treatment for at least 4 months
- with a viral load <200 copies/mL for at least 4 months
- Nelfinavir (NFV) and M8 concentrations obtained in 46 patients
- first visit: before and 0.5, 1, 3 and 6 h after drug intake
- second visit: before and 3h after drug intake
\rightarrow Panhard X et al. Population pharmacokinetic analysis for nelfinavir and its metabolite M8 in virologically controlled HIV-infected patients on HAART. Brit J Clin Pharmacol in press

Simultaneous population PK of NFV/M8

- NFV: one compartment, $1^{\text {st }}$ order absorption and elimination
- M8: one compartment, $1^{\text {st }}$ order metabolization rate constant k_{m}
- identifiable parameters:
- NFV: $V / F, C l / F$ and k_{a}
- M8: $V_{m} / F k_{m}$ and $C l_{m} / F k_{m}$
- selection of random effects based on AIC:
- IIV estimated on $V / F, C l / F$ and $C l_{m} / F k_{m}$
- IOV estimated on $C l / F$
- combined error model

Use of the randomization test

Significant interaction effect in the final model (LRT):

- $C l / F$ increased by 1.2 fold ($\mathrm{p}_{L R T}<10^{-4}, \mathrm{p}_{\text {Wald }}=0.135$)
- $C l_{m} / F k_{m}$ decreased by 1.8 fold ($\mathrm{p}_{L R T}=0.020, \mathrm{p}_{\text {Wald }}=0.011$)
in the 27 patients receiving ZDV
Randomization test
- 1000 random permutations of comedication with ZDV
- pop PK analysis of the corresponding data sets
- evaluation of the significance of the interaction effect

Resulting corrected p -values

- $C l / F: \mathrm{p}_{L R T}=0.030, \mathrm{p}_{\text {Wald }}=0.170$
- $C l_{m} / F k_{m}: \mathrm{p}_{L R T}=0.052, \mathrm{p}_{\text {Wald }}=0.016$

Conclusion

- tests based on NLMEM allow
- to test PK interaction or lack of interaction
- to greatly decrease the number of samples per patient
\rightarrow great interest for trials performed
- in patients, as HIV patients illustrated here
- special populations (children, older patients)
- necessity of a correction method the type I error?
- need of further evaluation
- depends on the estimation method or algorithm
- next step: planification of PK interaction studies
- estimation of the expected SE taking IOV into account using PFIM
- estimation of the corresponding power or sample size

