Non-linear mixed-effects models for tests of interaction or of lack of interaction in cross-over and parallel pharmacokinetic studies: application to the test of interaction between protease inhibitors and nucleoside analogs in HIV patients

Xavière Panhard and France Mentré

INSERM U738 - CHU Bichat Claude Bernard

Context (1) : tests in PK cross-over trials

Tests comparing PK parameters between the 2 treatment arms

- interaction trials \rightarrow comparison test
- bioequivalence trials \rightarrow equivalence test

Standard approach (FDA 1999, EMEA 1998 and 2000)

Estimate the AUC by NC approach

- comparison: paired Student or Wilcoxon test on log(AUC)
- equivalence (Average Bioequivalence, FDA 2000)
 - \circ Schuirmann's two one-sided test (TOST) on log(AUC)
 - $\,\circ\,$ 1 estimate the ${\rm Cl}_{90\%}$ of $\mu_{\rm AUC}^{(T)}-\mu_{\rm AUC}^{(R)}$
 - 2 compare this $\text{Cl}_{90\%}$ to [-0.2;0.2]

Drawback:

- large number of samples per subject (between 10 and 20)
- underlying PK model not taken into account

Context (2): anti-retroviral drugs of HIV infection

Anti-retrovirals prescribed in HIV infection

- combination of molecules with numerous interactions
- very high inter and intra-patient variability

Plan

- 1- evaluation of the type I error and power without modelling IOV
- 2- evaluation of the impact of modelling IOV
- 3- application to the Puzzle II study
- 4- evaluation of the randomization test on the interaction of ZDV on NFV/M8

Methods (1) - Model and notations

Subject $i \ (i = 1, ..., N)$, sampling times $t_j \ (j = 1, ..., n)$ $y_{i,j}^{(k)}$: observation of sujet i at time t_j for treatment $k \ (k = R, T)$

$$y_{i,j}^{(k)} = f(t_j, \phi_i^{(k)}) + \varepsilon_{i,j}^{(k)}$$

 ε : measurement error, gaussian with null mean and variance:

$$\sigma_{i,j}^{(k)\,2} = \sigma^2 (a + f(t_j, \phi_i^{(k)}))^2$$

Individual parameters

$$\phi_i^{(k)} = \mu + \beta \mathbb{1}_{k=T} + \eta_i + c_i^{(k)}$$

 $\eta_i \rightsquigarrow \mathcal{N}(0,\Gamma), c_i^{(k)} \rightsquigarrow \mathcal{N}(0,\Psi)$ $\Gamma \text{ and } \Psi \text{ often supposed diagonal}$ $log(AUC) \text{ is a component of } \phi \to \phi_{AUC}$

Methods (2) - Comparison tests

$$H_0: \{\mu_{\mathsf{AUC}}^{(T)} - \mu_{\mathsf{AUC}}^{(R)} = 0\} \Leftrightarrow \{\beta_{\mathsf{AUC}} = 0\}$$

Standard tests (guidelines)

- separate analysis of each PK profile
- estimation of the individual NC AUC
- paired Student and Wilcoxon comparing NC $log(AUC)_i^{(k)}$

Development of 4 tests based on NLMEM

- Global tests
 - joint analysis of the two treatment groups
 - 1 LRT, comparing model with $\beta_{AUC} = 0$ and model with β_{AUC} estimated
 - 2 extension of the Wald test comparing β_{AUC} to 0
- EB tests
 - separate analysis of each treatment group
 - \circ estimation of the EB $\theta_i^{(k)}$
 - \circ Student and Wilcoxon comparing the EB $\theta_{AUC, i}^{(k)}$

Methods (3) - Equivalence tests

 $H_0: \{\mu_{\mathsf{AUC}}^{(T)} - \mu_{\mathsf{AUC}}^{(R)} \le -\delta \text{ or } \mu_{\mathsf{AUC}}^{(T)} - \mu_{\mathsf{AUC}}^{(R)} \ge \delta\} \Leftrightarrow \{\beta_{\mathsf{AUC}} \le -\delta \text{ or } \ge \delta\}$

Typically $\delta = 0.2$ ($e^{-\delta} = 0.8$ and $e^{\delta} = 1.25$)

Standard tests (guidelines)

- Student TOST on NC $log(AUC)_i^{(k)}$
- adaptation of TOST to the Wilcoxon test on NC $log(AUC)_i^{(k)}$ (Chow and Liu, 1999)

Global tests

- no simple extension of the LRT for equivalence
- Wald: same principle as for the TOST using $CI_{90\%}$ of β_{AUC} (SE of β_{AUC} is estimated by nlme)

EB tests

• adaptation of the standard tests to the $\theta_{AUC, i}^{(k)}$

Evaluation by simulation - Theophylline

Population PK on the original dataset

- *N*=12 subjects, *n*=10 samples per subject
- one compartment, 1st order absorption and elimination
- parametrization on $log(k_a)$, log(AUC), log(V)

Estimated values used to simulate concentration data

- fixed effects: $\hat{\mu}_{k_a} = 0.39$, $\hat{\mu}_{AUC} = 4.61$ and $\hat{\mu}_V = -0.73$
- combined error model: $a=1, \sigma=0.1$
- SD of the random effects for $log(k_a)$, log(AUC) and log(V) resp.
 - IIV: 0.10, 0.20 and 0.20
 - IOV: 0.05, 0.10 and 0.10

Simulated designs: combinations of N=12, 24 and 40, n=10, 5 and 3

Results (1) - Type I error

Comparison

Results (3)

- good performance of EB tests
- inflation of the type I error of global tests at finite distance
- the 2 global tests are the most powerful

→ Panhard X, Mentré F. Evaluation by simulation of tests based on non-linear mixed-effects models in pharmacokinetic interaction and bioequivalence cross-over trials. **Stat Med 2005**

Impact of modelling IOV

- same PK model (theophylline)
- only designs with 240 samples per subject
- for each parameter, estimation of :
 - **IIV**
 - ° IOV
 - an interaction effect
- evaluation of type I error and power (only for interaction)

Results

Power

- evaluated for e^{δ} =0.8, 0.9, 1.1 and 1.25
- good power for the 2 tests
- 1 to 2% inferior to that obtained without modelling IOV

Application: ANRS 107 - Puzzle II

Prospective, open, multicenter trial in HIV+ patients:

- under stable treatment for at least 1 month
- with a viral load > 10 000 copies/mL

PK substudy: 2 period cross-over in 10 patients

- from inclusion to W2 : atazanavir (ATZ)
- from W3 to W26 : ATZ + tenofovir (TFV)

Objective: evaluate the interaction of TFV on ATZ PK Samples taken at W2 and W6: 1, 2, 3, 5, 8, and 24 h after drug intake

Population PK of atazanavir (1)

Objectives

- build the PK model, taking the 2 periods into account
- estimate IIV and IOV
- test the interaction effect of TFV on the PK parameters

PK model

- one compartment model with zero order absorption and 1st order elimination
- parametrized in $log(T_a)$, log(Cl/F) and log(V/F)
- homoscedastic variance

$$f(\theta, t) = \frac{FD}{T_a Cl} \left((1 - e^{-\frac{Cl}{V}t}) \mathbb{1}_{t < T_a} + \frac{e^{-\frac{Cl}{V}\tau \mathbb{1}_{t < T_a}} (1 - e^{-\frac{Cl}{V}T_a}) e^{-\frac{Cl}{V}(t - T_a)}}{(1 - e^{-\frac{Cl}{V}\tau})} \right)$$

Resultats - population PK

	Mean	SE	IIV (%)	IOV(%)
$log(T_a)$	1.32	0.10	21.7	0
β_{T_a}	0.306	0.10	_	_
log(AUC)	10.7	0.17	49.2	0
β_{AUC}	-0.380	0.090	_	_
log(V/F)	4.01	0.20	0	53.5
$\beta_{V/F}$	0.159	0.003	_	-

Significant interaction effect (Wald test) of TVF on:

- *log*(*AUC*): p<10⁻⁴
- $log(T_a)$: p=0.0019

Equivalence between the 2 treatment groups for:

• log(V/F): 90% CI for $\beta_{V/F}$ = [-0.335 ; 0.652]

Concentrations and predicted curves

Test of interaction in usual population PK analyses

Inflation of the type I error of the test of binary covariates

- already showed by several authors for comparison tests \rightarrow no reevaluation by simulation
- among correction methods: randomization tests
- possible extension to absence of interaction

Interaction of ZDV on the PK of NFV/M8 (1)

- Cophar I ANRS 102 study: prospective, open, multicenter trial in HIV+ patients
 - under stable treatment for at least 4 months
 - with a viral load <200 copies/mL for at least 4 months
- Nelfinavir (NFV) and M8 concentrations obtained in 46 patients
 - first visit: before and 0.5, 1, 3 and 6h after drug intake
 - second visit: before and 3h after drug intake

 \rightarrow Panhard X et al. Population pharmacokinetic analysis for nelfinavir and its metabolite M8 in virologically controlled HIV-infected patients on HAART. Brit J Clin Pharmacol in press

Simultaneous population PK of NFV/M8

- NFV: one compartment, 1st order absorption and elimination
- M8: one compartment, $\mathbf{1}^{st}$ order metabolization rate constant k_m
- identifiable parameters:
 - \circ NFV: V/F, Cl/F and k_a
 - M8: V_m/Fk_m and Cl_m/Fk_m
- selection of random effects based on AIC:
 - \circ IIV estimated on V/F, Cl/F and Cl_m/Fk_m
 - \circ IOV estimated on Cl/F
- combined error model

Use of the randomization test

Significant interaction effect in the final model (LRT):

- Cl/F increased by 1.2 fold (p_{LRT} < 10⁻⁴, p_{Wald} = 0.135)
- Cl_m/Fk_m decreased by 1.8 fold (p_{LRT}=0.020, p_{Wald}=0.011) in the 27 patients receiving ZDV Randomization test
 - 1000 random permutations of comedication with ZDV
 - pop PK analysis of the corresponding data sets
 - evaluation of the significance of the interaction effect

Resulting corrected p-values

- *Cl/F*: p_{*LRT*}=0.030, p_{*Wald*}=0.170
- Cl_m/Fk_m : p_{LRT}=0.052, p_{Wald}=0.016

Conclusion

- tests based on NLMEM allow
 - to test PK interaction or lack of interaction
 - $^{\circ}\,$ to greatly decrease the number of samples per patient
 - \rightarrow great interest for trials performed
 - in patients, as HIV patients illustrated here
 - special populations (children, older patients)
- necessity of a correction method the type I error?
 - need of further evaluation
 - depends on the estimation method or algorithm
- next step: planification of PK interaction studies
 - estimation of the expected SE taking IOV into account using PFIM
 - estimation of the corresponding power or sample size

