

Comparing the Proportional Odds Model to the Differential Drug Effect Model for Cumulative Logits

Maria C. Kjellsson¹ Per-Henrik Zingmark^{1,2}, E. Niclas Jonsson¹ and Mats O. Karlsson¹

¹ Division of Pharmacokinetics and Drug Therapy, Uppsala University, Sweden ² Department of Clinical Pharmacology, AstraZeneca R&D Södertälje, Sweden

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Modelling Categorical Data

Ordered Categorical Data

- observations cannot be predicted directly, only the probability of making a particular observation
- the categories should be linked
- function of the parameters is related to *Cumulative Probability*

$$P(Y \ge j) = g(\alpha_j, \beta, \mathbf{x}), \quad j = 1, ..., J$$

(with $P(Y \ge 1) = 1$ only need to model j = 2, ..., J.)

Models

- Prop Odds
- Diff Drug Eff
- Study
- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Proportional Odds Model

$$g(\alpha_j, \beta, \mathbf{x}) = \frac{e^{f(\alpha_j, \beta, \mathbf{x})}}{1 + e^{f(\alpha_j, \beta, \mathbf{x})}}, \quad j = 2, ..., J$$

$$f(\alpha_j, \beta, \mathbf{x}) = \alpha_j + \beta \mathbf{x} + \eta_i$$

- Introduced by Lewis Sheiner (Sheiner CPT 1994)
- $g(\alpha_{i},\beta,x)$ varies between 0 and 1
- x is the predictor vector
 - e.g. concentrations
- $\{\alpha_i\}$: the baseline probability for each category
- β : an effect that is the same for all categories
 - e.g. Emax and EC50

Models

- Prop Odds
- Diff Drug Eff
- Study
- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Proportional Odds Model

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Differential Drug Effect Model

$$g(\alpha_j, \beta, \mathbf{x}) = \frac{e^{f(\alpha_j, \beta, \mathbf{x})}}{1 + e^{f(\alpha_j, \beta, \mathbf{x})}}, \quad j = 2, ..., J$$
$$f(\alpha_j, \beta, \mathbf{x}) = \alpha_j + \beta \mathbf{x} \cdot f_{diff}$$
$$f_{diff} = \prod_{n=3}^j \frac{e^{\phi_n}}{1 + e^{\phi_n}}$$

- Differential drug effect = f_{diff} varies between 0 and 1
 - One parameter, ϕ is added per category, except for the 2 lowest categories
- Hierarchical with the proportional odds model

Models

- Prop Odds
- Diff Drug Eff
- Study
- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Proportional Odds Model

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Differential Drug Effect Model

 $f_{diff} = 0.5$ for P(Y>=3) and $f_{diff} = 0.5$ for P(Y>=4)

Models

- Prop Odds
- Diff Drug Eff
- Study
- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Differential Drug Effect Model

 $f_{diff} = 0$ for P(Y>=4)

Models

- Prop Odds
- Diff Drug Eff
- Study
- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Aim

To investigate the performance of the differential drug effect model relative to that of the proportional odds model by

- assessing the Type I error rate for the differential drug effect model and
- assessing possible improvements adding the differential drug effect to models for data previously analysed used the proportional odds model

UPPSALA

UNIVERSITET

Data

Assessing Type I error rate

1. 4-Category simulated data

- Simulated using proportional odds model
- Drug effect = Linear (dose)

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Data

Assessing Possible Improvements adding the Differential Drug Effect Model

- 2. 3-Category T-cell data (Zingmark *et al* BJCP 2004)
 - Drug effect = Emax (conc.)
 - Categorised continuous data
- 3. 5-Category diarrhoea data (Xie et al CPT 2002)
 - Drug effect = Linear (AUC)
 - Parent drug + 2 metabolites
 - Point Scale (0-4)
- 4. 6-Category sedation data (Zingmark et al BJCP 2002)
 - Drug effect = Step
 - 1. Fully awake
 - 2. Drowsy but answers when spoken to
 - 3. Answers slowly when spoken to
 - 4. Reacts when spoken to but does not answer
 - 5. Reacts only to pain
 - 6. Does not react to pain

Models

- Prop Odds

- Diff Drug Eff

Study

- Aim

- Data

- Method

- Results

- Discussion

- Conclusion

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Assessing Possible Improvements adding the Differential Drug Effect Model

Using datasets 2, 3 and 4

Method

Results

UPPSALA UNIVERSITET

Assessing Type I error rate

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Nominal value	Corresponding drop in OFV	Type I error rate
5%	3.84	4.9%
1%	6.64	0.9%

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Results

Assessing Possible Improvements adding the Differential Drug Effect Model

Data		df	Critical Values (5% sign. level, χ²-distr.)	∆OFV
Data2 - T-cells		~1	3.84	3.0
	Parent drug	~1.5	4.92	1.8
Data 3 - Diarrhoea	Metab. 1	~1.5	4.92	0.5
	Metab. 2	~1.5	4.92	0.2
Data4 - Sedation		~2.5	6.90	74

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Results

Assessing Possible Improvements on Sedation Data

Results Assessing Possible Improvements on Sedation Data

Predictive Performance

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Results

Assessing Possible Improvements on Sedation Data

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Discussion

- The differential drug effect model offered no improvement over the proportional odds model for
 - Simulated data
 - Categorised continuous data
 - Diarrhoea data
- The differential drug effect model was adequate for describing
 - Sedation data

WHY?

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Discussion

- The proportional odds model is defined for ordered categorical data representing a categorisation of continuous scale (Agresti Categorical Data Analysis. 2002 Wiley)
- Simulated data
 - simulated using the proportional odds model
- T-cell data
 - categorised continuous data
- Diarrhoea data
 - scale appears homogeneous enough

Sedation?

Models

- Prop Odds
- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Discussion

- Sedation
 - Not representing a categorisation of a continuous scale
 - 1. Fully awake
 - 2. Drowsy but answers when spoken to
 - 3. Answers slowly when spoken to
 - 4. Reacts when spoken to but does not answer
 - 5. Reacts only to pain
 - 6. Does not react to pain

Approx. Prop. Odds

Models

- Prop Odds
- Diff Drug Eff
- Study
- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Discussion

Oncology

Toxicity	CD4 count	Atrioventricular heart block	Allergic reaction
0	WNL	None	None
1	< LLN – 500/mm ³	Asymptomatic, not requiring treatment	Transient rash, drug fever < 38°C
2	200-<500/mm ³	Symptomatic, but not requiring treatment	Urticatia, drug fever ≥ 38°C, asymptomatic bronchospasm
3	50-<200/mm ³	Symptomatic and requiring treatment	Symptomatic bronchspasm, requiring parental medication
4	<50/mm ³	Life-threatening	Anaphylaxis
	Prop odds	Possibly Prop odds	Diff Drug

Models

- Prop Odds

- Diff Drug Eff

Study

- Aim
- Data
- Method
- Results
- Discussion
- Conclusion

Conclusion

 The differential drug effect model had the desired properties of not being indicated where it is not necessary and provide model improvement when the categorical data does not represent a categorisation of continuous data.

UNIVERSITET

Acknowledgements

Special thanks to

My supervisors Mats Karlsson and Siv Jönsson My collaborators Per-Henrik Zingmark and Niclas Jonsson

Our cluster "shepherds" Pontus Pihlgren and Lars Lindbom

References

- Sheiner LB. A new approach to the analysis of analgesic drug trials, illustrated with bromfenac data. *Clin Pharmacol Ther* 1994, 56; 309-22.
- Xie R *et al.* Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. *Clin Pharmacol Ther* 2002, 72: 265-75
- Zingmark PH *et al.* Population pharmacokinetics of clomethiazole and its effect on the natural course of sedation in acute stroke patients. *Br J Clin Pharmacol* 2003, 56; 173-83
- Zingmark PH, Edenius C, Karlsson MO. Pharmacokinetic/pharmacodynamic models for the depletion of Vb5.2/5.3 T cells by the monoclonal antibody ATM-027 in patients with multiple sclerosis, as measured by FACS. *Br J Clin Pharmacol* 2004, 58: 378-89
- Agresti A. Categorical Data Analysis. 2nd Edition, 2002 Wiley.