Introduction

Objectives

Left-censored data

Differential equations

Viral dynamics estimation

Conclusion

The SAEM algorithm for nonlinear mixed models with left-censored data and differential equations

Application to the joint modeling of HIV viral load and CD4 dynamics under treatment

Adeline Samson<sup>1</sup>, Marc Lavielle<sup>2</sup>, France Mentré<sup>1</sup>

<sup>1</sup>INSERM U738, Université Paris 7, Paris, France

<sup>2</sup> Université Paris 5, Université Paris-Sud, Orsay, France

## Nonlinear mixed model

#### Introduction

Objectives

- Left-censored data
- Differential equations
- Viral dynamics estimation
- Conclusion

 $y_{ij} = f(\phi_i, t_{ij}) + g(\phi_i, t_{ii})\varepsilon_{ii}$  $\varepsilon_{ii} \sim \mathcal{N}(0, \sigma^2)$  $\phi_i \sim \mathcal{N}(X_i \mu, \Omega)$ 

- $y_{ij}$  observation of subject *i* at time  $t_{ij}$
- $\phi_i$  individual random parameter of subject i
- $\varepsilon_{ij}$  measurement error at time  $t_{ij}$
- Homoscedastic or heteroscedastic error model
- X<sub>i</sub> covariate
- Estimation of parameters  $\mu, \Omega, \sigma^2$  by maximum likelihood

・ロン ・四 ・ ・ ヨン ・ ・ ヨン …

# Estimation algorithms

#### Introduction

- Objectives
- Left-censored data
- Differential equations
- Viral dynamics estimation
- Conclusion

## Linearization algorithm (FO, FOCE)

- Sheiner, Rosenberg, Melmon, 1972; Lindstrom and Bates, 1990
- NONMEM, nlme in R
- Numerical limits

### Gaussian quadrature

- Pinheiro and Bates, 1995; Wolfinger, 1996
- proc NLMIXED in SAS
- Slow convergence

### Expectation-Maximisation (EM) algorithms

- MC-EM, *Leary, 2004*
- MC-PEM, Guzy, 2006
- SAEM, Delyon, Lavielle, Moulines, Ann. Stat., 1999; Kuhn and Lavielle, Comput. Stat. Data An., 2005 Statistical convergence

# HIV-cells dynamics



э

< ∃→

< A

# HIV-cells dynamics modeling

#### Introduction

- Objectives
- Left-censored data
- Differential equations
- Viral dynamics estimation
- Conclusion

Evaluation from repeated measurements of viral load/  $\mathsf{CD4^+}$ 

• Nonlinear mixed effect models

### Difficulties

- Limit of quantification for viral load data
- Differential system describing simultaneously viral load/CD4<sup>+</sup> dynamics

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

## Objectives

#### Introduction

#### Objectives

- Left-censored data
- Differential equations
- Viral dynamics estimation
- Conclusion

- 1 Extension of SAEM for the analysis of left-censored data
- 2 Extension of SAEM for models defined by ordinary or stochastic differential equations
- Modeling with SAEM the viral dynamics of the Cophar 2-ANRS 111 clinical trial

・ 伺 ト ・ ヨ ト ・ ヨ ト

# 1 Left-censored viral load data



Viral load not quantified below a limit of quantification (LOQ)

- Omission of all data below LOQ
- Imputation to LOQ/2

Left-censored data

- Computation of likelihood conditional on censoring (Beal, 2001)
- Multiple imputation (Hughes, 1999; Jacqmin-Gadda et al., 2000)

# Methods

Introduction

Objectives

Left-censored data

Differential equations

Viral dynamics estimation

Conclusion

## Extension of the SAEM algorithm

- Gibbs algorithm to perform multiple imputation of the censored data in the simulation step
- Convergence of estimates to a maximum of the likelihood proved

Evaluation on simulated datasets of left-censored viral load data

• Comparison with naive methods

Application to the Trianon-ANRS 81 trial

• Comparison of treatments

Samson, Lavielle, Mentré. Extension of the SAEM algorithm to left-censored data in non-linear mixed-effects model: application to HIV dynamics model. Comput. Stat. Data Anal., to appear

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

#### Introduction

Objectives

Left-censored data

Differential equations

Viral dynamics estimation

Conclusion

## Evaluation on simulated data

*Ding and Wu, 2001* Biexponential model of HIV viral load decrease

$$f(\phi, t) = \log_{10}(P_1 e^{-\lambda_1 t} + P_2 e^{-\lambda_2 t})$$

• 
$$\phi = (\ln P_1, \ln \lambda_1, \ln P_2, \ln \lambda_2)$$

• 6 measurements: 1, 3, 7, 14, 28 and 56 days

• N = 40 subjects



Simulation of 1000 datasets

# Analysis of left-censored data

Left-censored data



(a) Before censoring: analysis with SAEM

(b) Censoring of data below LOQ = 400 cp/mLStatistical methods to compare

- Naive method: omission of data below LOQ
- Simple imputation: first data below *LOQ* imputed to *LOQ*/2, omission of the followings
- Extension of SAEM with the left-censored dataset

## Results

Left-censored data Differential equations

| Parameters               | Bias (%)<br>before censored data |                 |                      |      |
|--------------------------|----------------------------------|-----------------|----------------------|------|
|                          | censoring                        | Naive<br>method | Simple<br>imputation | SAEM |
| In P <sub>2</sub>        | 0.1                              | 2.6             | 10.7                 | 0.2  |
| $\ln \lambda_2$          | 0.1                              | 10.5            | 22.9                 | 0.6  |
| Var (In P <sub>2</sub> ) | 2.2                              | 12.7            | 24.8                 | 6.2  |
| Var (ln $\lambda_2$ )    | 0.9                              | 47.1            | 98.3                 | 6.6  |
| $\sigma^2$               | 0.5                              | 10.3            | 440.8                | 0.6  |
|                          | RMSE (%)                         |                 |                      |      |
| $\ln P_2$                | 1.3                              | 3.2             | 10.9                 | 1.6  |
| $\ln \lambda_2$          | 3.1                              | 11.4            | 23.4                 | 3.9  |
| Var (In P <sub>2</sub> ) | 26.6                             | 37.1            | 58.3                 | 37.7 |
| Var (ln $\lambda_2$ )    | 25.7                             | 56.0            | 113.5                | 36.8 |
| $\sigma^2$               | 16.3                             | 26.2            | 453.2                | 19.3 |

Samson, PAGE, June 16 2006

# Analysis of Trianon-ANRS 81 trial

Introduction

Objectives

Left-censored data

Differential equations

Viral dynamics estimation

Conclusion

Trianon trial

- 144 patients infected by HIV-1 followed during 72 weeks
- Randomized treatments
  - 3TC: lamivudine + stavudine + indinavir
  - NVP: nevirapine + stavudine + indinavir
- *LOQ*: 20 cp/mL

Initial statistical analysis

Launay et al., 2002

- Percentage of patients under LOQ
- Treatment 3TC more efficient than treatment NVP Objective
  - Analysis of the viral load decrease with SAEM

< 回 > < 三 > < 三 >

## Results



Viral dynamics estimation

Conclusion



- Naive methods: no significant treatment effect
- SAEM: significant treatment effect on the second slope of the decrease (p < 0.01 for Wald and likelihood ratio tests)</li>

イロト イポト イヨト イヨト

#### Introduction

Objectives

Left-censored data

## Differential equations

Viral dynamics estimation

Conclusion

# Ø Model with ordinary differential equations

Ordinary differential equations (ODE) describing dynamics of viral load decrease and  ${\rm CD4^+}$  increase

Extension of the SAEM algorithm for  $\ensuremath{\mathsf{ODE}}$ 

- Numerical approximation of ODE
  - Runge-Kutta
  - Local linearisation schemes
    - Adapted to stiff differential equations
    - Save computational time when included in MCMC algorithm
- Convergence of estimates to a maximum of the likelihood proved
- Boundary of the error induced by the numerical approximation

Donnet, Samson. Estimation of parameters in incomplete data models defined by dynamical systems. J. Stat. Plan., Infer., to appear.

# Model with stochastic differential equations

Stochastic differential equations (SDE) taking into account for

- Correlated residual errors due to model misspecification
- Random physiological fluctuations

### Extension of the SAEM algorithm for SDE

- Approximation of the diffusion process by Euler-Maruyama
- Gibbs algorithm to simulate the diffusion process
- Convergence of estimates to a maximum of the likelihood proved
- Boundary of the error induced by the Euler-Maruyama approximation

Donnet, Samson. Parametric inference for diffusion processes from discrete-time and noisy observations. Proceedings of the 38th 'Journées de Statistiques', Société francaise de Statistiques, 2006

Introduction

Objectives

Left-censored data

Differential equations

Viral dynamics estimation

Conclusion

# Simultaneous modeling of viral load-CD4<sup>+</sup> dynamics

- Modeling of viral load
  - Bi-exponential model under assumption of constant CD4<sup>+</sup>
    - Unsatisfactory long-term assumption
  - Large number of censored viral load data after 3 months
    - Difficulty to compare efficacy of treatments

Joint modeling of virus-CD4 dynamics

- Use of differential equations
- Improve the long-term prediction
- Better understanding of
  - Infection dynamics
  - Action of treatments

Difficulties

- Stiff differential equations
- Failure of FOCE (nlme) and Gaussian quadrature

### Objectives

Left-censored data

Differential equations

Viral dynamics estimation

Conclusion

#### ntroduction

- Objectives
- Left-censored data
- Differential equations
- Viral dynamics estimation
- Conclusion

# Data and methods

### Cophar 2-ANRS 111 trial

- 32 HIV-infected patients initiating anti-retroviral treatment with lopinavir protease inhibitor
- Measurements during 1 year
  - Viral load (LOQ = 50 cp/mL)
  - CD4+

### Methods

- Differential system describing virus-CD4<sup>+</sup> dynamics
- Analysis of viral load-CD4<sup>+</sup> dynamics by combining the 2 extensions of the SAEM algorithm

< 回 > < 三 > < 三 >

## Differential system

### Perelson et al., 1996; Di Mascio et al., 2004

miroductio

Objectives

Left-censored data

Differential equations

Viral dynamics estimation

Conclusion



$$\frac{dT_Q}{dt} = \lambda + rT_{NI} - \alpha T_Q - \mu_{TQ}T_Q$$

$$\frac{dT_{NI}}{dt} = \alpha T_Q - \gamma (1 - \eta_{RTI})T_{NI}V_I - rT_{NI} - \mu_{TNI}T_{NI}$$

$$\frac{dT_I}{dt} = \gamma (1 - \eta_{RTI})T_{NI}V_I - \mu_{TI}T_I$$

$$\frac{dV_I}{dt} = (1 - \eta_{PI})\pi T_I - \mu_V V_I$$

$$\frac{dV_{NI}}{dt} = \eta_{PI}\pi T_I - \mu_V V_{NI}$$

Samson, PAGE, June 16 2006

3

## Results

- Introduction
- Objectives
- Left-censored data
- Differential equations
- Viral dynamics estimation
- Conclusion



### Conclusion

- First joint modeling of viral load/CD4 $^+$  dynamics
- Estimation of all parameters with SAEM

3

# Conclusion

- Introduction
- Objectives
- Left-censored data
- Differential equations
- Viral dynamics estimation
- Conclusion

- Extension of the SAEM algorithm
  - Left-censored data
  - Ordinary and stochastic differential equations
  - Inter-occasion variability (*Panhard and Samson*'s poster: III-15)
  - $\Rightarrow$  Extension of convergence results
- Application to HIV viral dynamics modeling
  - Trianon: bi-exponential model and treatment comparison
  - Cophar-2: dynamics parameter estimation
  - $\Rightarrow\,$  Good numerical properties of SAEM, even with complex models
- Monolix software
  - Available on web site (www.math.u-psud.fr/~lavielle/monolix/)
  - Lavielle et al. software demonstration

(人間) トイヨト イヨト