

Modelization of a categorical toxicity score :

Application to colorectal cancer patients treated with capecitabine

Emilie HÉNIN¹, Klaas P. ZUIDEVELD², Céline DARTOIS¹, Brigitte TRANCHAND¹, Gilles FREYER¹, Pascal GIRARD¹

¹ EA3738, Faculty of Medicine Lyon-Sud, OULLINS, France

² F. Hoffman-LaRoche Ltd., BASEL, Switzerland

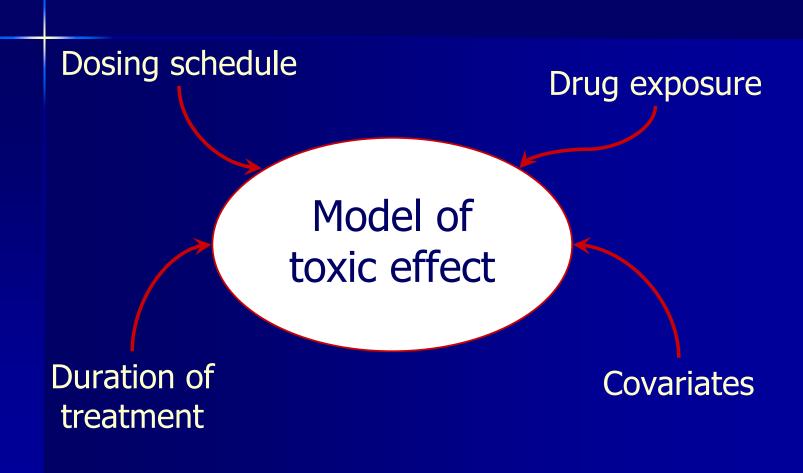
Capecitabine Oral pro-drug of 5-Fluorouracile

- Oral cytotoxic treatment for breast and colorectal cancer
- Metabolized to 5-Fluorouracile predominantly in tumour cells

 Main toxicities: Hand and Foot Syndrome (HFS), Diarrhoea, Nausea, Vomiting, Fatigue

Capecitabine Oral pro-drug of 5-Fluorouracile

In case of severe toxicities:


- Need to adapt the dosage regimen using rational quantitative based information
- Patients may modify themselves their compliance

A dynamic longitudinal model for toxicities would help:

- \rightarrow to understand potential compliance issues
- \rightarrow to adapt dosage regimen in clinical routine

PATIENTS & METHODS

Patients

2 large phase III studies^{1,2}

Capecitabine (oral)

2500mg/m²/day 14 days on / 7 days off 603 patients

30 weeks or until disease progression

EFFICACY? **TOXICITY**?

5FU/Leucovorin (IV)

LV 20mg/m² + 5FU 425mg/m² daily for 5 days in 4-week cycles 604 patients

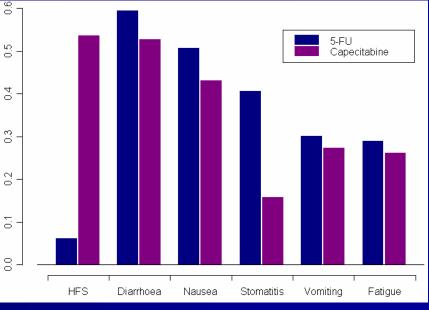
> ¹ Hoff et al., *J Clin Oncol*, 2001; 19(8):2282-2292 ² VanCutsem et al., *J Clin Oncol*, 2001; 19(21):4097-4106 PAGE 2006, 16th June

Patients Characteristics

inclusions from October 1996 to March 1998

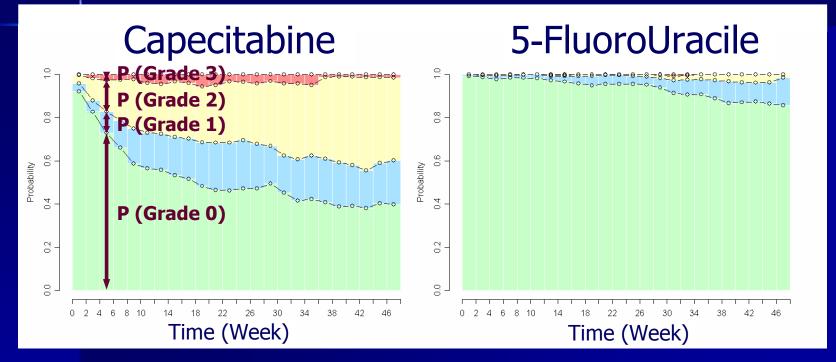
	Capecitabine	5-FU/LV
Age *	62 (23 – 86)	62 (24 – 87)
Height (cm) *	168 (142 – 196)	168 (142 – 195)
Weight (kg) *	72.6 (35.8 – 208.7)	72.5 (36.4 – 152)
Sex Male	58%	61%
Female	42%	39%
Patients randomized	603	604
Patients treated	595	593
Treatment duration (days) *	153 (4 – 507)	126 (2 – 397)

* mean (min – max)


Main toxicities

Less toxicity in the Capecitabine group than in the 5FU group

Except for the Hand-and-Foot Syndrome (HFS)


equency

Proportion of patients experiencing at least once an adverse events with grade>0

Evolution of HFS

Only Hand-and-Foot Syndrome seems to be clearly related to drug exposure

- HFS: cutaneous toxicity, characterised by pain, redness, peeling of the skin of palms and soles
 - Measured by a score representing its severity, scaling from 0 (none) to 3 (severe)

In the data set:

- Only responding patients after 30 weeks
- \rightarrow Data of HFS will be modelled only for the first 30 weeks
- Very few observations of HFS grade 3 (<3%)
- →Occurrences of grade 2 and 3 grouped in the same category (painful toxicity)

Model building

Capecitabine 595 patients

400 patients Building dataset

195 patients Qualification dataset

Categorical data → proportional odds ratio model

- Model the <u>probability</u> of experiencing a score of HFS
- Use of the logistic transformation

Structural model for Logit

$$p = \frac{e^{\operatorname{Logit}(p)}}{1 + e^{\operatorname{Logit}(p)}}$$
 with $\operatorname{Logit}(p) \in \Re$

Combination of several components:
Transitional model
Dose accumulation model

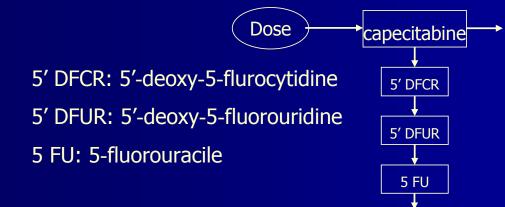
Transitional Model

Score at time t dependent of score at time t - 1

Conditional probabilities on score transitions

$$p(Score_{t} = m) = p(Score_{t} = m|Score_{t-1} = n)$$

_{m=0,1,2}


At time t: Logit $(p_t) = f(Score_{t-1})$

Zingmark PH. et al, J Pharmacokinet Pharmacodyn , 32(2), 2005

Dose accumulation Model

PK model of Capecitabine

In our data, no PK information !

Urien S. et al, J Pharmacokinet Pharmacodyn , 32(6), 2005

PAGE 2006, 16th June

Dose accumulation Model simplifications thanks to KPD¹ approach

Assume accumulation of drug in the body during the treatment, and mono-exponential elimination

¹ Jacqmin P. et al, PAGE 10 (2001) Abstract 232

Model building

- Parameters estimated by the Laplacian Method implemented in NONMEM V
- Building of the model guided by predictive checks and internal goodness-of-fit:
 - "Building dataset" simulated 100 times
 - Goodness-of-fit plots (PRED vs. OBS)
 - Predictive confidence interval of observed probabilities

Covariate inclusion

Following covariates tested:

- age, sex, height, weight, body surface area, karnofsky status, type of cancer, race...
- alkaline phosphatase, transaminase, creatinine clearance
- Likelihood ratio test for covariates (α=0.01)

 Correlation between inter-individual variabilities to be tested

RESULTS

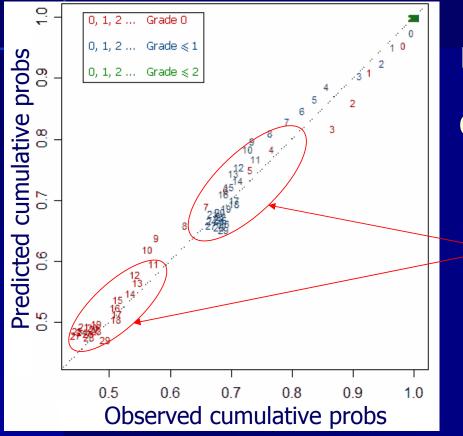
Model Building

Dose

Final HFS Model: Model characteristics

$$\begin{cases} Logit\{P(Y=0)\} = B_0 - \frac{E_{MAX} \cdot (Q \cdot K)}{(Q \cdot K) + ED_{50}} + \theta_{CLCR_b} \cdot (CLCR_b - 75.5) + \eta_i \\ Logit\{P(Y \le 1)\} = B_0 + B_1 - \frac{E_{MAX} \cdot (Q \cdot K)}{(Q \cdot K) + ED_{50}} + \theta_{CLCR_b} \cdot (CLCR_b - 75.5) + \eta_i \\ P(Y=2) = 1 - P(Y \le 1) \end{cases}$$

K~ log $\mathcal{N}(K_{POP}$, ω_{K})


- B_0 , B_1 and E_{MAX} dependent of the score at the previous time

- (CLCR $_{\rm b}$ -75.5) the difference of the basal creatinine clearance with the population median

- $\eta_{K_i} \eta_i$ the inter-individual variabilities with corr $(\eta_{K_i}, \eta_i) \neq 0$

Final HFS Model: Observed vs. Predicted Cumulative Probabilities

Predicted cumulative probs *VS.* Observed cumulative probs

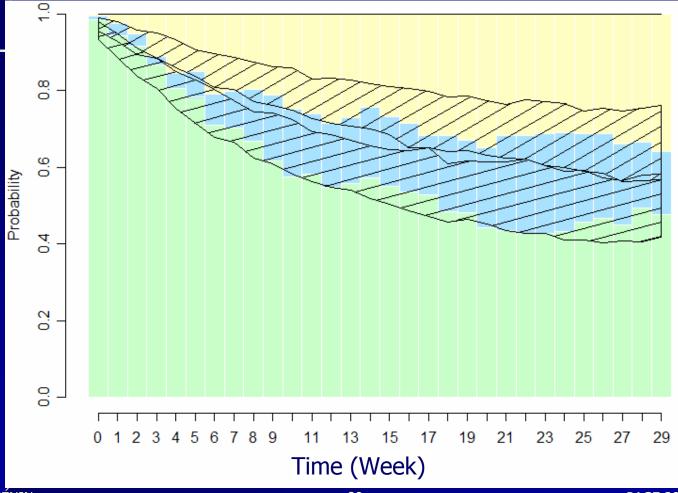
Good estimation at the end of period

RESULTS

Model qualification

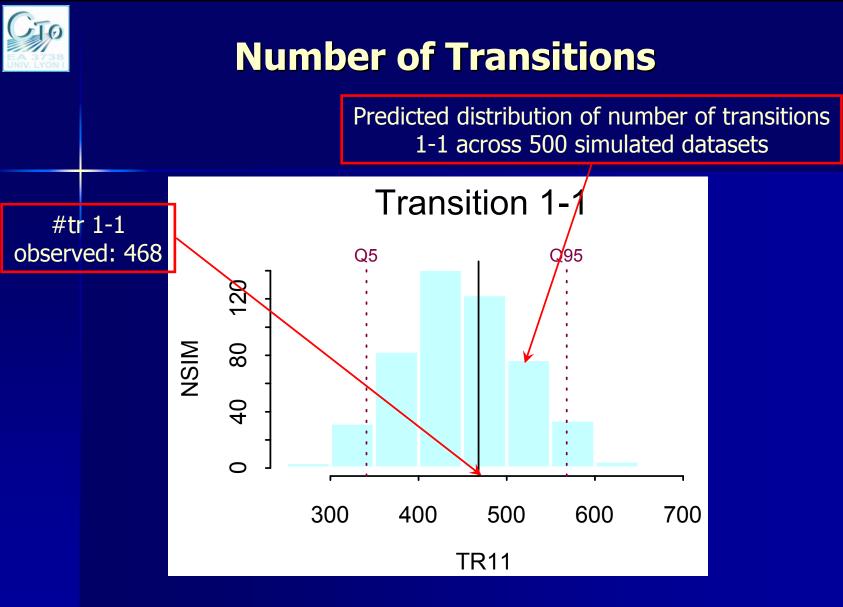
Model qualification: Predictive Check

HFS Model + Parameter estimates (on 400 patients)

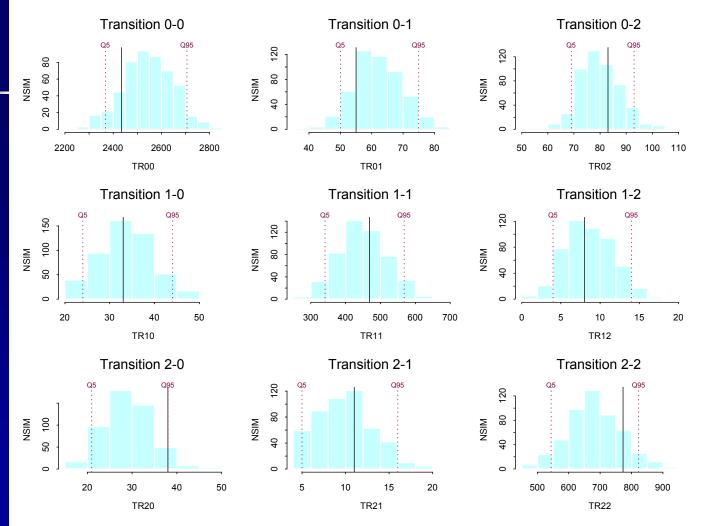

Simulation 500 times HFS profiles in 195 patients Visual predictive check

Qualification criteria

Do we accept the HFS Model ?



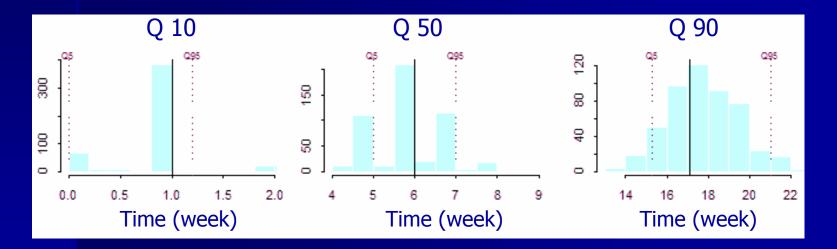
Model qualification: Visual Predictive checks on qualification dataset


Emilie HÉNIN

PAGE 2006, 16th June

Number of Transitions

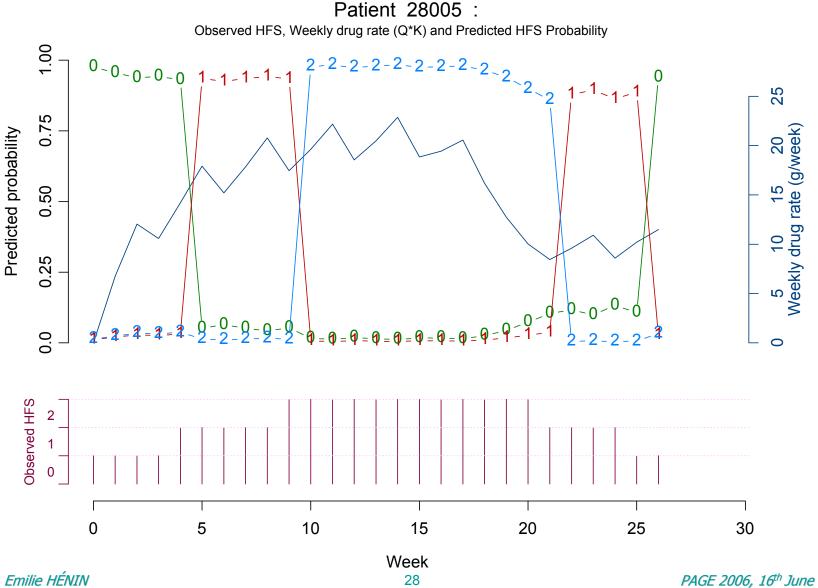
Emilie HÉNIN


25

PAGE 2006, 16th June

Time to the first occurrence of HFS (grade≥1)

 Population quantiles of distribution of time before the first occurrence of HFS (Grade≥1)



Individual HFS profiles

According to individual data and POSTHOC estimates

Emilie HÉNIN

28

PERSPECTIVES

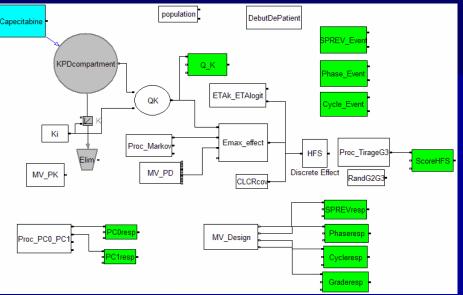
HFS Model: Simulations to...

Compare several dosing regimen

Compare several dose reduction policies

Study impact of non-compliance

HFS Model: Simulations implementation in TSII (Pharsight)


Virtual patients defined by:

- body surface area
- basal creatinine clearance

Drug regimen:

- 2500 mg/m²/day
- 14 days on / 7 days off

Dose Modification:

	Grade 2	Grade 3	
1 st appearance of	Interrupt until resolved to grade 0-1	Interrupt until resolved to grade 0-1	
HFS	then continue at 100%	then continue at 75%	
2 nd appearance of	Interrupt until resolved to grade 0-1	Interrupt until resolved to grade 0-1	
HFS	then continue at 75%	then continue at 50%	
3 rd appearance of	Interrupt until resolved to grade 0-1	Discontinue treatment	
HFS	then continue at 50%		
4 th appearance of HFS	Discontinue treatment		

Perspectives (1/2)

Adaptation of individual dosing regimen using the model:

- How should a clinician modify dosing regimen in case of a severe HFS toxicity ?
 - \rightarrow reduce dose?
 - \rightarrow shorten treatment cycles?
 - \rightarrow lengthen "wash-out periods"?

Perspectives (2/2)

Study of the impact of non-compliance on HFS:

 No patient compliance data available for treatment of cancer by an oral cytotoxic chemotherapy

in silico study

Future clinical study OCTO (Compliance to an oral anticancer chemotherapy):

Assessing simultaneously patient compliance and efficacy/toxicity in patients treated with Capecitabine