

Modelling transfer of dioxins from feed to eggs

experimental data model building identification analysis

Kees Kan; ASG, Lelystad: laying hen experimentation, sampling Wim Traag, Ron Hoogenboom; RIKILT, Wageningen: dioxins analysis Marco Zeilmaker, Jan van Eijkeren; RIVM, Bilthoven: transfer modelling

Centre for Substances and Integrated Risk Assessment

Modelling in three stages:

•Experimental data:

no data obtained, no knowledge gained <u>data obtained, knowledge gained</u>

•Model building:

PBPK, classical compartment, classical kinetic do not stick to paradigms

Identification analysis

which parameters can be quantified, which not where to trigger, what to sample

Experimental data

KINETICS OF SUSTAINED ORAL ADMINISTRATION

fast rate initial phase
slow rate terminal phase
interindividual variability

NOTE:

sampling scheme
experimental duration
pooled eggs

Model reduction

PBPK modelling approach: from 5 to 2 compartments

•only sparse and outdated data on body composition

 no data on cardiac output and regional blood flow

 no data on lipid content and lipid composition of tissues (tissue:blood partition coefficients)

•compound property directed reduction: fat compartment for lipophilic compounds

Data fitting

Eggs:
$$C_{y,f} = C_{y,ss} \left(1 - \left(a \times e^{\lambda_1 t} + \left(1 - a \right) \times e^{\lambda_2 t} \right) \longrightarrow$$

Fat: $C_f = C_{f,ss} (1 - (b \times e^{\lambda_1 t} + (1 - b) \times e^{\lambda_2 t}))$

$$\lambda_{1} = -(q_{c} + q_{f} + R + \frac{1}{\sqrt{((q_{c} + q_{f} + R)^{2} - 4q_{f} R))}} / 2$$

$$\lambda_{2} = -(q_{c} + q_{f} + R - \frac{1}{\sqrt{((q_{c} + q_{f} + R)^{2} - 4q_{f} R)}}) / 2$$

$$a = \frac{\lambda_{2} + R}{\lambda_{1} - \lambda_{2}} \qquad b = \frac{\lambda_{2}}{\lambda_{1} - \lambda_{2}}$$

$$C_{y,ss} = \frac{Y}{W_{y,f}} \frac{F D_{0}}{R} \qquad C_{f,ss} = \frac{q_{c}}{q_{f}} \frac{1}{W_{f}} \frac{F D_{0}}{R}$$

Parameter identification

CONDITIONAL

Parameter fitting

TRICK:

set K = 0, fit parameters: Y_{max} , F_{min} , $W_{f,min}$ calculate, assuming $F_{max} = 1$, Y_{min} , K_{max} , $W_{f,max}$ validate: setting F = 1, fit Y_{min} , K_{max} , $W_{f,max}$

RESULT:

Y: [0.043, 0.055] day⁻¹ K: [0, 0.011] day⁻¹ F: [0.78, 1] W_f : [0.23, 0.29] kg CALCULATE = VALIDATE

 $F_{max} = 1$

Modelling result

Validation:

 different subgroups : dioxins, furans, mono-ortho PCBs, nonortho PCBs

•10 fold higher exposure & different dioxins composition

non-dioxin like PCBs

Application:

EU-limits in eggs (3 pg TEQ / g yolk fat) and in feed (0.75 ng TEQ / kg feed) do not comply: should be 0.2 ng TEQ / kg feed

Conclusions

•Modelling transfer of dioxins from feed to eggs succeeded thanks to:

careful experimental set-up

justified choice of kind of model

parameter identification analysis

The model was successfully
 verified on other data
 applied to dioxin limits comparison in eggs and feed

PBPK heaven: Q_{eff} CL_h P_c $P_{y,f} = P_f$

powerful assumption on one parameter value, e.g. $P_f = 150$

or: experimentally determination of one parameter value, e.g. P_f

earth: $q_c q_f Y K$

REDEMPTION

J.C.H. van Eijkeren, M.J. Zeilmaker, C.A. Kan, W.A. Traag & L.A.P. Hoogenboom; A toxicokinetic model for the carry-over of dioxins and PCBs from feed and soil to eggs; *Food Additives and Contaminants*; **23** (2006) 509-517

L.A.P. Hoogenboom, C.A. Kan, M.J. Zeilmaker, J.C.H. van Eijkeren, & W.A. Traag; Carry-over of dioxins and PCBs from feed and soil to eggs at low contamination levels – Influence of mycotoxin binders on the carry over from feed to eggs; *Food Additives and Contaminants*; **23** (2006) 518-527

