A Modeling and Simulation Case Study Impact on an Early Clinical Development Program

Ken Kowalski, Steve Olson, Ann Remmers Pfizer Global Research and Development Ann Arbor, MI

PAGE June 14-16, 2006

Outline

Background
PK/PD Model

- Predictions and Extrapolations
- Clinical Trial Simulations
- Comparison of Predictions vs. Actual Results
- Impact on Drug Development Program
- □ Final Remarks

- Drug X is in early clinical development for the treatment of acute pain
- Dose-ranging (20-fold dose range) study conducted using capsule formulation
 - Active control worked as expected
 - Significant pain relief for Drug X relative to placebo
 - Lower than expected pain relief relative to active control

Mean (LOCF) Pain Relief Scores

Lower Early Drug Exposure for Capsule

A Formulation Issue

- What would the response have been if absorption had been more like the solution?
 > PK/PD model required
 - Modeling performed to relate drug exposure to PR scores and time of dropout (rescue)

Conceptual PK/PD Model

PK/PD Model Equations

□ Pain Relief Model (5-point ordinal scale)

 $\geq \text{Logit}\{P(PR \geq m \mid \eta)\} = f_p(t_j; m, \theta_p) + f_d(C_p; \theta_d) + \eta$

- f_p denotes placebo effects exponential asymptote model
- f_d denotes drug effects Emax model
- η denotes interindividual random effect

□ Time-to-Rescue Medication (Dropout) Model

 $\ge \mathsf{P}(\mathsf{T}_{i} = t_{j} \mid \mathsf{T}_{i} \ge t_{j}, \ \mathsf{PR}_{ij} = m) = 1 - \exp\{-\lambda_{m}(t_{j} - t_{j-1})\}, \ t_{j} \ge 1$

 $\ge P(T_i \ge t_j \mid PR_{ij} = m) = exp\{-\lambda_m t_j\}, t_j \ge 1$

Methodology

> Sheiner, CPT 1994;56:309-322

> Mandema & Stanski, CPT 1996;60:619-635

Sheiner, Beal, & Dunne, JASA 1997;92:1235-1255

Observed and Predicted Mean PR Scores

Mean (LOCF) PR Score Predictions/Extrapolations

- Dose = 1x Capsule (observed)
- Dose = 1x Capsule (predicted)
- Active Control (observed)
- Active Control (predicted)
- Dose = 1x Solution (predicted)
- Dose = 3x Solution (predicted)
- Dose = 6x Solution (predicted)

A Plan to Move Forward

□ Project team intrigued by these hypotheses

- Oral solution predicted to have greater efficacy than capsule formulation
- Higher doses may result in efficacy differentiation relative to active control
- Conduct clinical trial simulations to recommend a design to evaluate doses using the oral solution
- Dose selection could be made based on oral solution without having to wait for development of a new formulation

Formulation re-work could be done in parallel

Validated PK/PD model could be used to evaluate formulations

> No need to repeat dose-ranging with new formulation

Clinical Trial Simulations

- Simulate PK, PR scores, and rescue (dropout) times for 1000 hypothetical trials for each design
 - Placebo, Drug X oral solution (3 dose levels), Active Control

Perform a one-way ANOVA on TOTPAR6 for each trial

- > TOTPAR6 = $\Sigma PR_j(t_j t_{j-1}), t_0=0, t_n=6, j=1,...,n$
- Estimate differences between high dose (6x) of Drug X and Active Control
- Power calculated as the percent of trials where 95% LCL>0 (two-sided unadjusted for multiple comparisons)

Oral Solution Clinical Trial Simulation Results

Dose	TOTPAR6		Design I		Design II		Design III		Design IV	
	Est.	Diff.	Ν	Power	Ν	Power	Ν	Power	Ν	Power
Placebo	3.9	-7.1	50		50		50		50	
1x	10.1	-0.9	50	0.019	50	0.017	50	0.022	50	0.021
2x	12.1	1.1			50	0.173				
3x	13.0	2.0	50	0.298			50	0.383		
4x	13.6	2.6							50	0.553
6x	14.2	3.2	50	0.619	100	0.844	100	0.871	100	0.863
Control	11.0	0	50		100		100		100	

Design III was approved and recently completed

 \Box \triangle TOTPAR6 = 3.0 is assumed to be clinically relevant

>Approximately a 0.5 increase in PR score over first 6 hours

≻6x dose is only dose predicted to achieve this difference

TOTPAR6: Predictions Vs. Actual

Impact on Drug Development Program

- Hypotheses generated by the PK/PD model provided the rationale for exploring higher doses
- PK/PD modeling and simulation provided a basis to continue development of the compound without waiting for formulation re-work
- PK/PD modeling and simulation provided guidance for the solid dosage form development
- PK/PD model is being leveraged to provide guidance for other compounds in the same class

Final Remarks

How did we garner the trust and confidence of the team to employ a model-based approach?

- Couched PK/PD modeling results as "hypothesis generating" requiring empirical confirmation
- Explicit and transparent about assumptions
 - Same Emax across all compounds in class
 - All compounds can achieve similar effects assuming comparable exposure relative to their potency
 - Linear PK for Drug X through 6x dose
 - Confirmed in 2nd SDT study prior to conduction oral solution pain study

PK similar between HV subjects and patients

Calibration of model predictions against data-derived (non-model-based) endpoints used in standard statistical analysis

LOCF-imputed mean PR scores and TOTPAR6