Bayesian Estimation of Optimal Sampling Times for Pharmacokinetic Models

Stephen Duffull^{1,2}, Gordon Graham³, Kerrie Mengersen⁴

¹School of Pharmacy, University of Otago, Dunedin, New Zealand; ²School of Pharmacy, University of Queensland, Brisbane, Australia, ³Pfizer, Sandwich, UK; ⁴QUT, Brisbane, Australia

Introduction

- Optimal design techniques are gaining acceptance as a tool for designing PK and PKPD studies [1,2].
- These designs are based on finding the maximum of a scalar function of the information matrix (usually the determinant) – this provides the optimum sampling times for a given set of models and parameter values.
- Clinical acceptability of an optimized design requires that windows are provided around the optimal sampling times [1,2].
- These sampling windows are designed to provide regions of acceptable suboptimality.

Aim

• To explore the use of an MCMC approach for estimating sampling windows

Theory

- A fully Bayesian method is described that involves defining:
 - priors on the sampling times and the parameter values
 - a utility function
- The posterior distributions for the sampling times are obtained using MCMC

Prior for parameters

• The prior on the parameter space was assumed to be given by a lognormal distribution where,

	$\ln(\mu_1)$		$\omega_{1,1}$	•••	$\omega_{1,p}$	
$p(\mathbf{\theta}) \sim N_p$:	,	:	۰.	:	
	$\left[\ln(\mu_p)\right]$		$\omega_{p,1}$		$\omega_{p,p}$	J

Prior for sampling times

- The prior for the n sampling times on the design space is given by
 p(**X**_i) = Unif (a_i, b_i), a_i > a_{i-1}, b_i > b_{i-1}, b_i > a_i for all i
- Two priors were considered, a mixture of uniforms or ordered uniforms
- For n = 2 sampling times these provide the following prior (Figure 1)

Utility function

 The utility (U) was given by the inverse square of the product of the relative standard errors (*i* denotes the *i*th iteration of the MCMC algorithm), and *M* the Fisher information matrix

$$U(\mathbf{X}^{l}, \mathbf{\theta}^{l}) = prod((diag((M^{-1}(\mathbf{X}^{l}, \mathbf{\theta}^{l}))^{0.5}(\mathbf{\theta}^{l})^{-1}))^{-2})$$

Posterior

- The (pre-) posterior distribution of the sampling times was obtained by integrating the following expression using the Metropolis Hastings algorithm $p(U(\mathbf{X}, \mathbf{\theta})) = \int p(U(\mathbf{X}, \mathbf{\theta}) | \mathbf{\theta}, \mathbf{X}) p(\mathbf{\theta}) p(\mathbf{X}) d\mathbf{\theta} d\mathbf{X}$
- The sampling windows were defined as the 95% credible interval of the posterior distribution of the sampling times

Application

- The model was a first order input and first order output, onecompartment model, given by:
- $C(t) = Dka(V(ka k))^{-1}(\exp(-kt) \exp(-kat)), \quad \mathbf{\theta} = [\log(V), \log(ka), \log(k)]'$ The parameters were assumed to be lognormally distributed,
- where $\boldsymbol{\theta} = [\ln(20), \ln(1), \ln(0.1)]$ and $\omega_{ii} = 0.1$ for all i
- The dose was 400 units and an additive residual variance model with a variance of 0.1 was assumed.
- Three sampling times were considered (data for mixture of uniforms prior is shown).
- Histograms of the sampling windows are provided in Figure 2, and for the asymptotic estimates of the expected standard error in Figure 3.

- The posterior mode of the sampling times were 0.46, 2.7 and 15 hours
- The optimal sampling windows were (0.08, 3.1) (1.9, 8.9), (9.6, 21.8) hours
 - The two priors gave comparable estimates of the windows
- The 97.5th percentile of the expected standard errors of the parameters were less than 30%

Conclusions

- A fully Bayesian method has been described for determining the full posterior distribution of optimal sampling times from which specific sampling times can be chosen and sampling windows defined
- The method is convenient (in terms of computation effort) and appears robust to our choice of the prior on the sampling times

References: 1. Waterhouse et al. JPKPD 2006;32:521-545. 2. Hennig et al. PAGE 15(2006) Abstr 970 [www.page-meeting.org/?abstract=970]