

50 \mathbf{N}

and Ic 5%, 2 0n in C es of the able 3. and 95% n in Figu e indire The ma 6) and ure 3.) mode)rated 3I data fo

sed for Pk/PD	ilation model us per Weight.	imates of the final Total TACI population of the final Total TACI population of the final Total TACI population of the final total technology of the final technology of technol	Table 2. Parameter esti mode
17.7	CV (%)	Proportional	Residual Error (%)
0.0211	θ_5	θ_5	Absorption Rate (1/h)
57.1	IIV (%)		
-0.282	$ heta_{g}$	CI = TVO * ava fa	Clearance/F (I /h)
1.04	$ heta_{\mathcal{A}}$		
37.8	IIV (%)		
0.214	θ_8	$CI = TVVP * exp (n_{2})$	Peripheral (Vp/F (L)
148	θ_3		
55 <u>.</u> 6	IIV (%)	VC=TVVC* { η_2 }	
0.211	θ_7	TVVC= $\theta_2^* \theta_7$ (if male)	Central VC/F (L)
15.0	θ_2	TVVC= θ_2 (if female)	
29.5	IIV (%)		
0.324	θ_6	CI = TVCI * exp fp	Clearance/F (L/h)
0.193	θ_{1}		
Estimate	Symbol	Covariate Model	PK Parameter

change from baseline)

30

ω

20

0

(9.07)) (552)

62

.1 (10.3) 30 (354)

	° ° ° 80° 80° ° 80° ° 80° ° 80° ° 80° ° 80° ° ° °	110	00 00 00 00	°€°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	11D	Q Peripheral	Abs. Ka Central	n in Tahle 2 The	nnulation PK Model	Popu
	0	130	à	130	130				nted schematically in Figure 1.	prese
	CMT: 6		CMT: 5		CMT:		ÇL ÇL	model, consisting response model is	ommon structure of the population PK/PD in the population PK/PD in the population PK/PD in the population of the populat	The c of a tv
D	direct response	ነed PK/PD in ነ.	es of the combin IgM, IgG and IgA	Population parameter estimate	Table 4. F		S	Resul		
	53 1 54 0.703 1	1 0.6: 0.7:	1 0.335 1 0.648 0.933 1	lation Matrices	Correl	I) method implemented	I Estimation with Interaction (FOCE	st Order Conditiona	oulation models were developed using Firs ONMEM version 5 software.	All po with N
	dual (SIGMA)	A) Resid	On I _{max} (OMEG			ion) was developed.	sponses (as a multivariate observat	on. The covariation del with all three rea	ident inhibition of immunoglobulin production variation within an individual, a PKPD moduction within an individual.	deper this cc
	2060	1010	1700	(ng/ml)		Is for IgM, IgA and IgG.	t separate population PK/PD mode	tly used to construction walk	odel was developed which was subsequention in the second sec	PK m
_1	63.1	21.6	93.6	% change from baseline)	Imax (%	drug_First_a population	ormation for both the free and bound	as it contained info	lation PK/PD Analyses [ACI-Id was selected as exposure variable	Popu Total
	IgA	lgG	IgM	neter	Param	ving the cascading PK/PD	s of TACI-Ig biological activity, follo [,] ¹⁵).	the primary marker: . Danhof <i>et al.</i> (200	gG, and IgA antibody levels in blood were t pt of biomarkers, recently introduced by M.	IgM, I conce
	line) profiles. nels.	rcent of base espective pa	lgG and IgM (per inserted in the re	4. Correlations between IgA, I Correlation coefficients are i	Figure -	g free TACI-Ig and TACI/	ACI-Ig and Total TACI-Ig (comprisin	ntrations of Free T/ SA assays.	nd PD Variables nacokinetic variables analyzed were conce Complex). Both were measured using ELIS	PK aı Pharn BLyS
	150 200	50 100	t of Baseline	0 100 150 200 Percent	0 50		Table 1. RA study design.		hort 6.	for Cc
	- 50		0	50 50 90 90 90 90 90 90 90 90 90 90 90 90 90		19 active, 6 placebo	7 doses, 2 weeks apart (EOW)	6 7x420	14 weeks for single-dose cohorts, eks for Cohorts 2 and 4 and 26 weeks	up to
0	\PB - 10	AGI				6 active, 2 placebo	Single dose	5 1x630	conducted at pre-defined intervals	were (
50	- 15					9 active, 3 placebo	3 doses, 2 weeks apart (EOW)	4 3x210	D and biomarker assessment and sment of safety and disease activity	אר, ד אר, ד
ŏ	- 20		0	· 0.780	0.752	6 active, 2 placebo	Single dose	3 1x210	A (Table 1). Sample collections for	with R
		0			Per 43	9 active, 3 placebo	3 doses, 2 weeks apart (EOW)	2 3x70	acodynamics (PD) of TACI-Ig when	pharn
	1 1				rcent 8 8	6 active, 2 placebo	Single dose	1 1x70	fety, pharmacokinetics (PK) and	the sa
			IgGPB		of Baselii 100	# of Subjects	Administration	ohort Dose (mg)	vere obtained from a phase lb, centre, double-blind, placebo-	Data multi-
	0			0						Data
- 0	- 10			IgMPB			S	Metho		
οō	- 20 - 15	0) 100 120 140 160	40 60 80		eptor TACI, acts as n, proliferation and itients with RA.	lar, ligand-binding portion of the rec al and autoimmune B-cell maturatic ndications, including treatment of pa	ning the extracellul stimulators of norma pment for several ir	ACI-lg, a recombinant fusion protein contain inhibitor of BLyS and APRIL, two potent s arvival. The molecule is currently in develop	ର <i>ସ</i> –
x random effects for red while estimating ze (N=73). With the	ire 5. etween the Imax were encounter quate sample siz	י given in Figu ficients both b רכפ difficulties s is the inade	for the model are r correlation coeff NMEM converger ble reason for this will be overcome.	in Table 4. The diagnostic plots cted in the PK/PD model by high the residual errors. Serious NOI trices simultaneously. The probal se 2 and phase 3, this obstacle v	for IgM, IgG and IgA are given The existing correlation is reflec IgM, IgG and IgA, and between block OMEGA and SIGMA matr accumulation of data from Phas	s, IgM and repeated	elationship between the <i>lg</i> (ith TACI-lg after single and	ntitatively the ru nic exposure w nts with RA.	o establish and characterize quar <i>A antibody levels</i> and the <i>systen</i> ubcutaneous (SC) doses in patier	S S T
elation coefficients ned PK/PD model	high, with corre tes of the combine	ie profiles) are imeter estima	percent of baselin e population para	(/PD model hree biomarkers (based on the pain excess of 0.7 (Figure 4). The	Simultaneous population PK. The correlations between the the calculated from all patients date		ive	Object		
RA	ritis	d	veen natoid witzerlan	bnship Betv with Rheun and M. Rogge¹ ional, Geneva, S	the Relatio Patients v iotis ² , J. Visich ¹ Serono Internat	Modeling of Response in Inato ² , O. Papasou Vashington U.S.A.;	Iation PKPD d Biomarke I. Nestorov ¹ , A Mu ics, Inc., Seattle, V	ymoGene	TACI-IG Expos	