

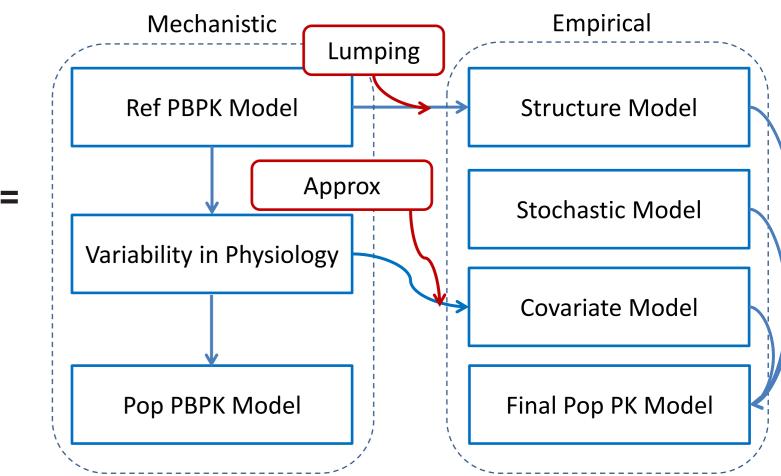
Modeling Inter-Individual Variability in PBPK Models and Deriving Mechanistic Covariate Models for PopPK

Alexander Solms^{1,2} Sabine Pilari^{1,2,3} Wilhelm Huisinga²

¹Graduate Research Training Program PharMetrX, Martin-Luther-University Halle, Free University of Berlin and University of Potsdam ²Computational Physiology Group, Institute of Mathematics, University of Potsdam ³Abbott GmbH Co. KG, Ludwigshafen/Rh., Germany (since May 2011)

Introduction .

Motivation: A population (Pop) pharmacokinetic (PK) model consists of a structural, stochastic (e.g. inter-individual-variability (IIV), residual model) & covariate model (functional relationship between covariates and PK parameter). Different modeling, estimation & validating techniques in data analysis can lead to different results and conclusion for the same data: A mechanistic access is preferable.


Objective:

- Introduce physiological inter-individual variability (IIV) in PBPK models using key-covariates like BH,BW,LBW,etc.
- Derive a covariate model in context of a classical Pop PK analysis via lumping [3] to get better mechanistic understanding of IIV regarding underlying physiology

Mechanistic Covariate Model

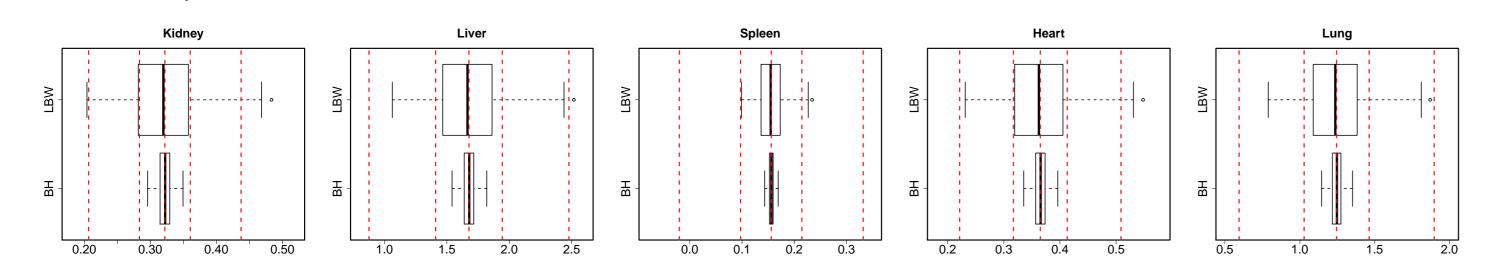
Proceeding:

- I. Approximation of scaling factors of skin and brain:
- $$\begin{split} & \text{SV}_{\text{bra}} \approx \text{SV}_{\text{ski}} \approx \text{LBW}/\text{LBW}_{\text{ref}} \Rightarrow \text{SV}_{\text{tis}} = \\ & \text{LBW}/\text{LBW}_{\text{ref}} =: \text{SV} \text{ for all tissues except} \\ & \text{adipose} \end{split}$$
- II. Via lumping derivation of a mechanistic covariate model for PK parameter (e.g. 2-CMT model):

Variability in Physiology _____

- Reference (Ref) PBPK: 13-CMT Whole-Body PBPK model, stratification to age & sex
- IIV: Scaling of reference tissue values (volumes & blood flows) with covariate depending scaling factor:

 $V_{tis} = SV_{tis}(Cov) \cdot V_{tis,ref}(age, sex) \qquad Q_{co} = SQ_{co}(Cov) \cdot Q_{co,ref}(age, sex)$ $Q_{tis} = SQ_{co}(Cov) \cdot Q_{tis,ref}(age, sex) \qquad CL = SQ_{co}(Cov) \cdot CL_{ref}(age, sex)$


with covariates Cov=BW, BH, BMI, LBW, BSA, ...

• Tissue-to-blood-partition-coefficient $K_{tis,i} = K_{tis,ref}(age, sex)$ constant

LBW-Approach:

- $SV_{bra} = 1$ (constant brain volume within population)
- SV_{ski} = BSA/BSA_{ref}
- $SV_{adi} = (BW LBW)/(BW_{ref} LBW_{ref})$ ($\Leftrightarrow V_{adi} = BW LBW$)
- SV_{tis,i} = (LBW V_{ski} V_{bra})/(LBW_{ref} V_{ski,ref} V_{bra,ref}) for remaining tissues (constant fraction of tissue volume regarding remaining body mass)
- SQ_{co} = SV_{hea} (detailed derivation in upcoming paper)

Comparison: (Quartiles and Whiskers) Data generated via LBW-, allometric scalling BH-approach ($SV_{tis} = (BH/BH_{ref})^{3/4}$) and experimental data from autopsy study [1] (red dashed line)

Dose • Lumped compartments cen = {ven, art, lun}, per = {rest} • Volumes of distributions $V_{cen,d}$ and $V_{per,d}$: $V_{cen,d} = \sum_{tis \in cen} V_{tis} \cdot K_{tis} = ... = SV \cdot V_{cen,ref} \cdot K_{cen}$ $V_{per,d} = ... = SV \cdot V_{rest,ref} \cdot K_{rest} + (BW - LBW) \cdot K_{adi}$

• Intercompartmental clearance **Q** and hepatic clearance **CL**:

$$\mathbf{Q} = \mathbf{SV} \sum_{tis \in per} \mathbf{Q}_{tis,ref} = \mathbf{SV} \cdot \mathbf{Q}_{per,ref} \qquad \mathbf{CL} = \mathbf{SV} \cdot \mathbf{CL}_{ref}$$

Conclusions:

CL

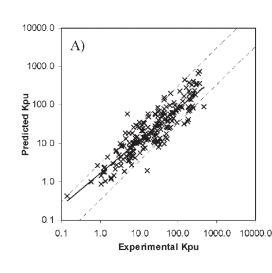
I. Covariate model takes into account important role of adipose in the PK for many drugs,

II. 1-1 relationship between IIV in physiology and IIV in mechanistic covariate model

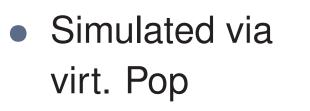
Lidocaine Example _____

- Tucker et al. data [6]: 5 male subjects, dosing 3 mg/[kg BW], 3 min. i.v. infusion, arterial plasma concentration measured
- Pop PK analysis with lumping strategy [3]: 3-CMT, elimination in per1 CMT:
 cen = {ven, art, lun}, per1 = {liv, kid, ...}, per2 = {ski, adi, bon, mus}
- No information about LBW, BMI, BH given \rightarrow no estimation for V_{adi} possible (because of homogeneous population BW is taken as descriptor for physiological IIV)

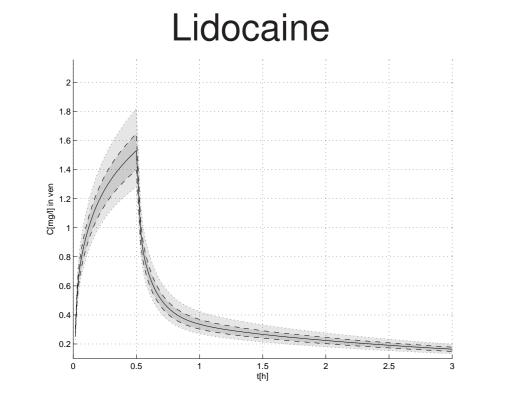
Mech. Pred.

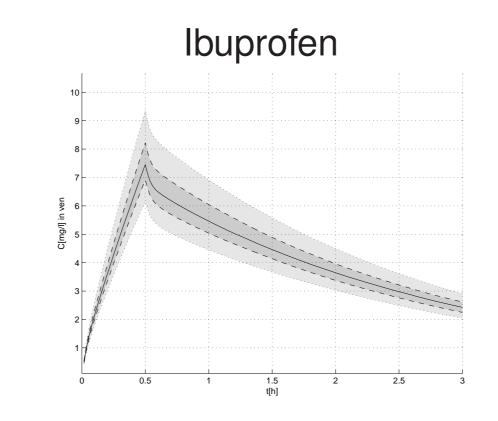

Emp. Fit

Emp. Fit


 \Rightarrow IIV via BH < IIV via LBW \leq experimental observed IIV

Impact of IIV vs. uncertainty in K_{tis}:


- Example: Lidocaine and Ibuprofen, 30 min. i.v. infusion,
- IIV is simulated via creating a virtual population (n=500) BH $\sim \mathcal{N}(1.71, 0.07)$ and BMI $\sim \log \mathcal{N}(22.8, 3.3)$ (Parameters taken from ICRP [2])
- Uncertainty in K_{tis} modeled with Monte Carlo simulations (n=500) for the reference man, drawing K_{tis} out the interval [1/3 $K_{tis,pred}$, 3 $K_{tis,pred}$]:

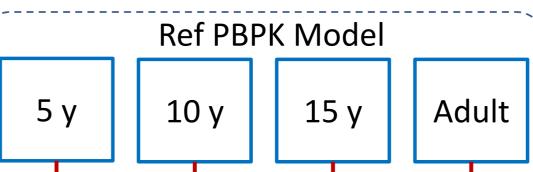


Rodgers et al. [4,5]: Misspecification of $K_{tis} \in [1/3K_{tis,obs}, 3K_{tis,obs}]$ for all tissues, for about 90% of compounds they tested in rat. (Plot taken from [4])

References

16 T. 14 -		Mean	CoV[%]	Mean	CoV[%]		
12- 5 8	V _{cen,d}	7.46	5.23	14.1	10.5		
	V _{per1,d}	14.44	4.16	44.33	26.82	C[mg/] in art	
	V _{per2,d}	125.21	5.69	71.97	10.53		
	Q ₂	4.64	5.17	2.74	10.58		
	Q_3	1.92	5.21	1.11	10.81	1988	
վոյ	CL	1.01	4.95	1.53	26.8	50 100 150 t[min]	

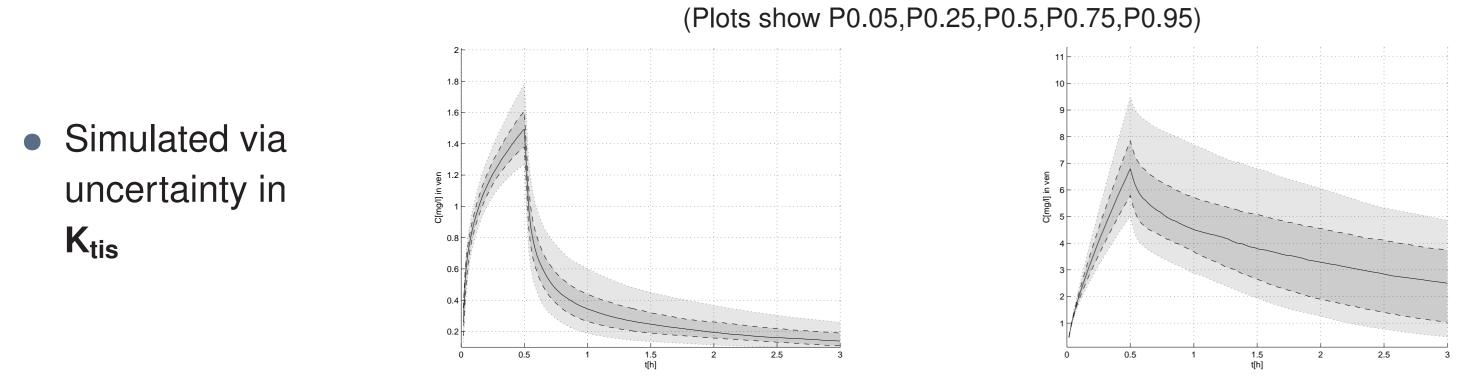
(Plots show VPC P0.3, P0.5, P0.7, green line lumped prediction)


Conclusions:

Differences between mechanistic and empirical methods in population ...

- I. . . . means could be due to possible misspecification in K_{tis} , e.g.: $K_{cen,pred} = 1.4$, using the experimental data to estimate K_{cen} in the mechanistic model gives $K_{cen} = 2.64$
- II. ...IIV could be due to neglected variability in K_{tis} , e.g.: In the mechanistic model there is $Var(V_{cen,d}) \propto Var(SV)$ because $V_{cen,ref}$ and K_{cen} are constants; assume an IIV in K_{tis} which is independent of V_{tis} , using the experimental data we would expect an IIV on K_{cen} of $CoV(K_{cen}) = 7\%$ in the mechanistic model

Children .


Comparison: Lumped Ref PBPK models and allometric scaling from adult to child $PK_{child} = a^b \cdot PK_{adult}$ with $a = BW_{child}/BW_{adult}$ and b = 1 for tissue volumes, b = 3/4 for tissue blood flows

Lumping

E.g.: For 25 compounds a 2-CMT model is assumed (deviation from Lumped Ref PBPK model):

 \Rightarrow Impact of uncertainty in partition coefficients can be more pronounced than the impact of variations in BH, LBW, etc. within a population

5 y 10 y 15 y Adult Allometric Scaling of Adult PK Parameter ⇒ Results are in good agreement and theoretically underpin allometric scaling (note: allometric scaling does not respect changing proportions of the largest tissues adipose and

muscle over the age classes)

[1] GL de la Grandmaison, I Clairand, M Durigon, Organ weight in 684 adult autopsies: new tables for a Caucasoid population, Forensic Sci Int 119, 2001.
 [2] International Commission on Radiological Protection (ICRP), Basic anatomical and physiological data for use in radiological protection: Reference values, ICRP Publication 89, 2002.
 [3] S Pilari, W Huisinga, Lumping of physiologically-based pharmacokinetic models and a mechanistic derivation of classical compartmental models, J PK PD 37, 2010.
 [4] T Rodgers, D Leahy, M Rowland, Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases, J Pharm Sci 94, 2005.
 [5] T Rodgers, M Rowland, Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions, J Pharm Sci 95, 2006.
 [6] GT Tucker, RA Boas, Pharmacokinetic aspects of intravenous regional anesthesia.Tucker, Anesthesiology 34, 1971.

Email: solms@uni-potsdam.de

URL: http://compphysiol.math.uni-potsdam.de