

Mathematical Modelling of CD19⁺ B Cell Reconstitution in Children After Insult to the Immune System

Soumya Perinparajah*, Reem Elfeky, Juliana M.F. Silva, John Booth, Oscar J. Charles, S.Y. Amy Cheung, James W.T. Yates, Austen Worth, Judith Breuer, Nigel Klein, Persis J. Amrolia, Paul Veys, Joseph F. Standing

*PhD candidate, Infection Section Infection, Immunity and Inflammation Research and Training Department Great Ormond Street Institute of Child Health, University College London, UK

4

Motivations

Previous immune reconstitution studies following haematopoietic stem cell transplantation (HSCT)

- T cells
- Adults
- Survival analysis

Unmet Need

- B cells
- Children
- Pharmacometrics

Clinical Impact

- Key factors associated with B cell recovery
- Treatment decisions
- Predict B cell recovery trajectories

B cells: key function in adaptive immunity as antibody-producing and antigen-presenting cells

Wilkinson and Rosser (2019) Front. Immunol [1]

HSCT : Procedure to replace damaged HSCs with healthy HSCs

Epstein-Barr Virus (EBV): Commonly reactivated post-HSCT due to reduced EBV-specific cytotoxic T cells

Odumade et al (2011) Clin Microbiol Rev [2]

EBV: EBV reactivation is the leading cause of post-transplant lymphoproliferative disease (EBV-PTLD)

Odumade et al (2011) Clin Microbiol Rev [2]

Rituximab: Prescribed off-label for children with EBV post-HSCT

- Chimeric monoclonal antibody targeting CD20⁺ on B cells
- Limited licensure in children
 - Rare vascular disorders
 - Previously untreated B lymphoma
- Reported half-life
 - Adults
 - 17.4 days (Gibiansky et al (2021) CPT:PSP [3])
 - 19.7 days (Ng et al (2005) J Clin Pharmacol [4])
 - Children
 - 26-29 days (Barth et al (2013) BJH [5])
 - 19.3 days (Pan et al (2019) BJCP [6])

CD19⁺ B cell reconstitution in children post-HSCT

a) Scale for age-related effects

Developed B cell maturation function using non-linear least squares (VT: B cells, YT: Ki67)

b) Estimate time delay between HSCT and CD19⁺ B cell production

Tested two functions

Equation	Parameters	Description
$y = \frac{1 - exp^{\left(\frac{-2t}{\lambda_h}\right)}}{1 + exp^{\left(\frac{-2t}{\lambda_h}\right)}}$	λ _h (days)	Time to recovery of bone marrow output of CD19 ⁺ B cells
$1 + exp(\lambda_r(1 - \frac{1}{\lambda_h}))$	λr	Rate of recovery in bone marrow output of CD19 ⁺ B cells
$v = \frac{t^{Hill}}{t^{Hill}}$	T50 (days)	Time to half-maximal bone marrow output of CD19 ⁺ B cells
$t^{H'''} + T50^{H'''}$	Hill co-efficient	Steepness of slope of CD19 ⁺ B cell recovery

Hoare et al (2017), Clin. Pharmacol. Ther [8]

CD19+ B cell reconstitution in children post-HSCT

Data and Model

Schematic and ODE

15

CD19⁺ B cell reconstitution in children post-HSCT

Results

Description	Parameter/	Estimate/Effect		% BSV	Bootstrap	Bootstrap	
	Covariate (units)	size (% RSE)		(% RSE)	95% CI	median	
Number of CD19 ⁺ B	*Setpoint	*112		-	-	-	
cells at steady state	(x10 ⁶ cells/L)						
CD19 ⁺ B cell	λ	1.68		115.76	1.36 - 2.05	1.68	
production rate	(x 10 ⁶ cells/day)	(2.45)		(0.0011)			
constant		Ĺ	ノ ー-			+	Higner than reported in adults
CD19 ⁺ B cell death	μ	0.015		113.58	0.013 - 0.018	0.015	(Macallan et al (2005) Blood [9])
rate constant	(cells/day)	(3.00)		(0.0061)			
Steepness of slope	Hill	4.17		-	4.05 - 4.29	4.17	
of CD19 ⁺ B cell		(0.49)					
recovery							
Time to half-	T50	58.9		137.48	44.0 - 64.0	58.3	
maximal output of	(days)	(1.07)		(0.0033)			Aligns with experimental data
CD19 ⁺ B cells from							(Maria Cardina at al (2008)
bone marrow							(Marie-Cardine et al (2006),
Effect of MAC on	T50_MAC	0.166		-	0.039 - 0.322	0.166	Clin. Imm. Ther [10])
T50		(10.12)					
Effect of PID on	T50_PID	-0.551		-	-0.595 – to -0.457	-0.551	
T50	_	(0.16)					
Effect of matched	T50_Donor	-0.00998		-	-0.116 - 0.0786	0.00710	
donor on T50		(25.75)					

- *Denotes derived parameter (λ/μ).
- Initial condition of B cell compartment set to 5 x 10⁶ cells/mL.
- Linearly parameterised covariate effects, i.e. multiplication of typical parameter value by (1 + effect size).

CD19⁺ B cell reconstitution in children post-HSCT ▲

Model Evaluation by age group

(A) Infants (< 2 years)

(B) Children (\geq 2 years and < 12 years)

(C) Adolescents (≥ 12 years)

Black dots are observed data, solid red line is observed median, dotted red line is observed 2.5th, 50th and 97.5th percentiles and grey shaded area is 95% prediction intervals for 2.5th, 50th and 97.5th percentiles.

Incorporated Hill-type equation to estimate time delay between HSCT and CD19⁺ B cell production by the bone marrow

Rituximab PD in children with EBV post-HSCT

Data and Model

Schematic and ODE

 $\frac{dA_2}{dt} = \lambda \cdot \left(\frac{T^{\gamma}}{T^{\gamma} + T50^{\gamma}}\right) - \mu \cdot \left(1 + \frac{E_{max} \cdot A_1}{ED_{50} + A_1}\right)$

 A_2

Rituximab PD in children with EBV post-HSCT

Results and Model Evaluation

10000 cell count (x10⁹/L) 1000 മ og₁₀ CD19⁺ of Total 200 600 400 11.00 Proportion o 200 600 Time after HSCT (davs)

<u>ش</u>

Summary of Model 2

Built K-PD model to quantify rituximab PD in children with EBV post-HSCT

Incorporated rituximab drug effect using E_{max} model

Estimated elimination half-life of 6.35 days for rituximab

Cox proportional hazards (PH): Cox-PH model for EBV reactivation in first 100 days post-HSCT in 56 children

Kania et al (2022) Front Immunol [11]

Sensitivity analysis: Previously reported mechanistic mathematical model of EBV kinetics

 β , NK effect on EBV inf'n; δ_2 , CTL killing rate of infected B cells; δ_m , death rate of inf'd memory B cells; ω_m , memory B cell reactivation rate; r_2 , CTL activation rate against infected B cells; r_m , memory B cell prolif'n rate

Kania et al (2022) Front Immunol [11]

Akinwumi (2018) University of Alberta [12]

Pharmacometric approach

Kania et al (2022) Front Immunol [11]

ODEs and Individuals Fits

 $\begin{aligned} \frac{dA_1}{dt} &= -k_e \cdot A_1 \\ \frac{dA_2}{dt} &= \lambda \cdot \left(\frac{T^{\gamma}}{T^{\gamma} + T50^{\gamma}}\right) - \mu \cdot \left(1 + \frac{E_{max} \cdot A_1}{ED_{50} + A_1}\right) \cdot A_2 \\ \frac{dA_3}{dt} &= K \cdot A_2 \cdot -\delta \cdot \left(1 + \frac{E_{max} \cdot A_1}{ED_{50} + A_1}\right) \cdot A_3 - Q \cdot A_3 \cdot A_5 \\ \frac{dA_4}{dt} &= N \cdot \delta \cdot A_3 - C \cdot A_4 \\ \frac{dA_5}{dt} &= R \cdot A_3 - D \cdot A_5 \end{aligned}$

K, Production rate of infected B cells; δ , Death rate of infected B cells; Q, CTL killing rate of infected B cells; N, viral burst size; C, viral clearance rate; R, Proliferation rate of EBV-specific CTLs; D, CTL death rate

Pre-HSCT ATG and recipient EBV seropositivity are significant risk factors for EBV reactivation in first 100 days post-HSCT in Cox-PH model

Parameters related to memory B cells and CTLs drive EBV viral load according to sensitivity analysis

Developing pharmacometric model to quantify dynamics of EBV reactivation post-HSCT

Conclusion

Unmet Need

- B cells
- Children
- Pharmacometrics

Our Work

- Built pharmacometric models with age scaling for:
 - CD19⁺ B cell reconstitution in children post-HSCT
 - Rituximab PD in children
 with EBV post-HSCT
 - EBV reactivation in children post-HSCT
- Future work on bioequivalence in rituximab biosimilars

Clinical Impact

- PID diagnosis, MAC and matched donor affect B cell recovery
- Inform rituximab dosing
- Models can predict patients' B cell recovery trajectories

References

- 1. Rosser EC, Wilkinson MG. B cells as a therapeutic target in paediatric rheumatic disease. Frontiers in immunology. 2019;10:214.
- 2. Odumade OA, Hogquist KA, Balfour HH. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clinical microbiology reviews. 2011 Jan 1;24(1):193-209.
- 3. Gibiansky E, Gibiansky L, Chavanne C, Frey N, Jamois C. Population pharmacokinetic and exposure–response analyses of intravenous and subcutaneous rituximab in patients with chronic lymphocytic leukemia. CPT: pharmacometrics & systems pharmacology. 2021 Aug;10(8):914-27.
- 4. Ng CM, Bruno R, Combs D, Davies B. Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. The Journal of Clinical Pharmacology. 2005 Jul;45(7):792-801.
- 5. Barth MJ, Goldman S, Smith L, Perkins S, Shiramizu B, Gross TG, Harrison L, Sanger W, Geyer MB, Giulino-Roth L, Cairo MS. Rituximab pharmacokinetics in children and adolescents with de novo intermediate and advanced mature B-cell lymphoma/leukaemia: a children's oncology group report. British journal of haematology. 2013 Sep;162(5):678-83.
- 6. Pan S, Yu H, Surti A, Cheng I, Marks SD, Brogan PA, Eleftheriou D, Standing JF. Pharmacodynamics of rituximab on B lymphocytes in paediatric patients with autoimmune diseases. British journal of clinical pharmacology. 2019 Aug;85(8):1790-7.
- 7. Morbach H, Eichhorn EM, Liese JG, Girschick HJ. Reference values for B cell subpopulations from infancy to adulthood. Clinical & Experimental Immunology. 2010 Nov;162(2):271-9.
- 8. Hoare RL, Veys P, Klein N, Callard R, Standing JF. Predicting CD4 T-cell reconstitution following pediatric hematopoietic stem cell transplantation. Clinical Pharmacology & Therapeutics. 2017 Aug;102(2):349-57.
- 9. Macallan DC, Wallace DL, Zhang Y, Ghattas H, Asquith B, de Lara C, Worth A, Panayiotakopoulos G, Griffin GE, Tough DF, Beverley PC. B-cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood. 2005 May 1;105(9):3633-40.
- 10. Marie-Cardine A, Divay F, Dutot I, Green A, Perdrix A, Boyer O, Contentin N, Tilly H, Tron F, Vannier JP, Jacquot S. Transitional B cells in humans: characterization and insight from B lymphocyte reconstitution after hematopoietic stem cell transplantation. Clinical immunology. 2008 Apr 1;127(1):14-25.
- 11. Kania SP, Silva JMF, Charles OJ, Booth J, Cheung SYA, Yates JWT, Worth A, Breuer J, Klein N, Amrolia PJ, Veys P, Standing JF. Epstein-Barr Virus Reactivation After Paediatric Haematopoietic Stem Cell Transplantation: Risk Factors and Sensitivity Analysis of Mathematical Model. Frontiers in Immunology. 2022. doi: 10.3389/fimmu.2022.903063
- 12. Akinwumi, S (2018). Modelling the Kinetics of EBV in Primary Carriers and Transplant Recipients. PhD thesis. Department of Mathematical and Statistical Sciences, University of Alberta
- 13. Wang Y, Zhou Y, Brauer F, Heffernan JM. Viral dynamics model with CTL immune response incorporating antiretroviral therapy. Journal of mathematical biology. 2013 Oct;67(4):901-34.

Acknowledgements

PhD Supervisors

Prof Joe Standing Prof Nigel Klein

Dr James Yates Dr Amy Cheung

GOSH DRIVE

John Booth

Mohsin Shah

London Pharmacometrics Interest Group

Funding

MRC iCASE studentship (MR/R015759/1)

AstraZeneca

AstraZeneca

Clinical collaborators

GOSH BMT Unit

Juliana Silva, Reem Elfeky, Persis Amrolia, Paul Veys

Addenbrookes Hospital

Amos Burke

Patients and their families

33

