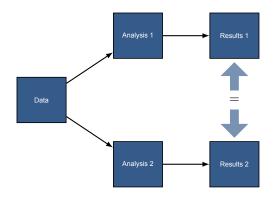
Reproducible Pharmacometrics

Using Reproducible Research methodologies to improve pharmacometric analyses

Justin J Wilkins E Niclas Jonsson

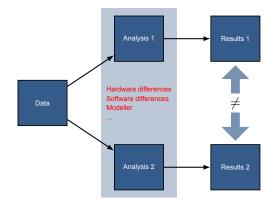
SGS Exprime Pharmetheus

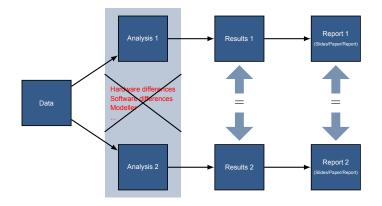
22nd PAGE meeting

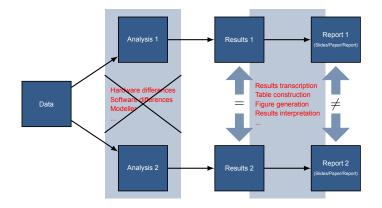

11-14 June, 2013 Glasgow, Scotland

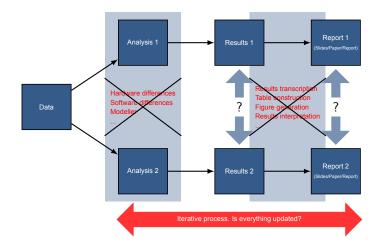
The aim

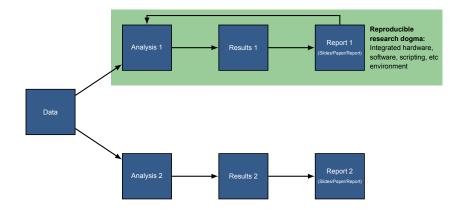
- To show how the principles of Reproducible Research can be used to improve quality and efficiency of generating pharmacometric Results (slides, reports and manuscripts).
- To show how recent advances in open software support the implementation of Reproducible Research workflows in pharmacometric analyses.

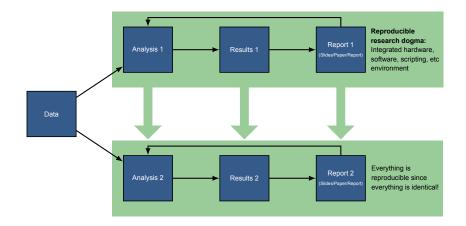


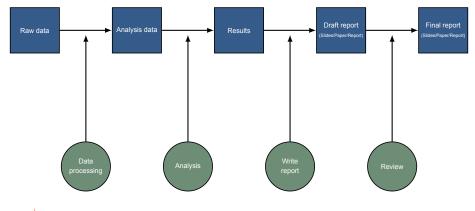


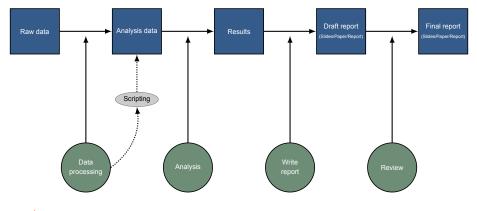


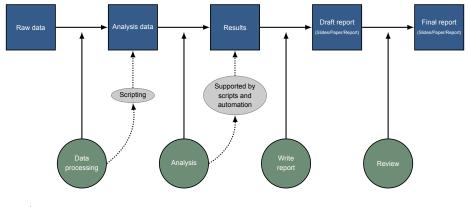


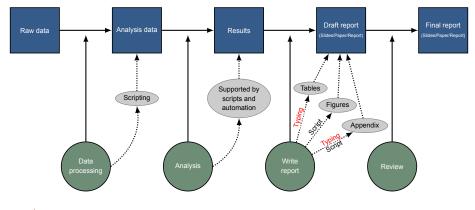




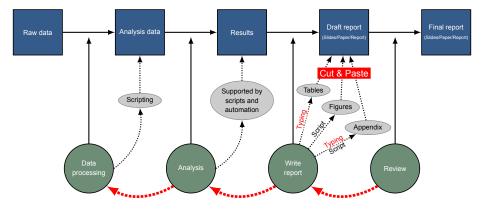


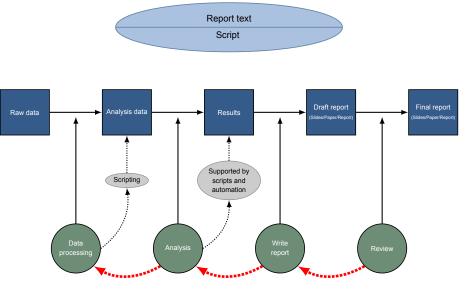


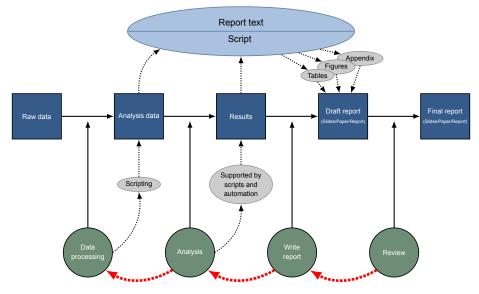


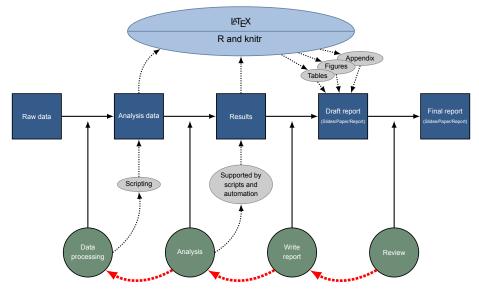

SGS Exprimo

SGS Exprimo


SGS Exprimo


SGS Exprimo


SGS Exprimo



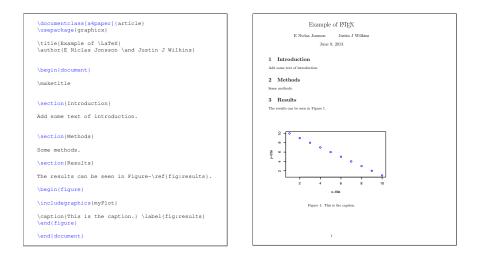
Software for Reproducible Research

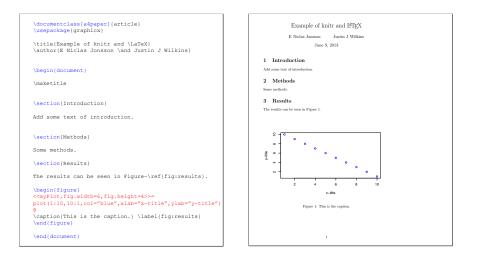
Proprietary / in house / platform or IT environment-specific software

- Track record varies
- Difficult to establish a common standard

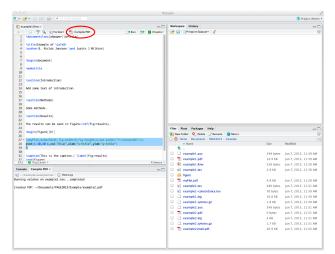
Software for Reproducible Research

Proprietary / in house / platform or IT environment-specific software


- Track record varies
- Difficult to establish a common standard
- LATEX+ R + RStudio + knitr
 - Open source available to everyone at no cost.
 - Not specific to pharmacometrics leverages developments in other fields.
 - RStudio offers an integrated analysis and document preparation environment.


LaTeX is a markup language

A LaTeX file (left) is plain text. After submitting it to LaTeX (latex latexfile.tex) the result is a PDF file (right).



With knitr, it is possible to mix LaTeX and R code

The file is first sent to knitr in R, which generates a LaTeX file, which in turn is sent to LaTeX to generate the PDF.

RStudio brings R, knitr and LaTeX together in a clean, integrated environment, with document generation at the push of a button

Benefits of a Reproducible Research workflow in pharmacometrics

- Reproducibility(!)
- Documentation
- Efficiency
- Very template oriented
- Possibility to prepare reports before final data and models
- Very good for large complicated technical documents

Drawbacks with LATEX and knitr

- Steep learning curve
- Very template oriented
- Integration into existing IT environments
- Unfamiliar and archaic interface...

A bit like this really

```
SPROB THEOPHYLLINE
                    POPULATION DATA
$INPUT
           ID DOSE=AMT TIME CP=DV WT
SDATA
           THEOPP
$SUBROUTINES ADVAN2
SPK
;THETA(1)=MEAN ABSORPTION RATE CONSTANT (1/HR)
;THETA(2)=MEAN ELIMINATION RATE CONSTANT (1/HR)
;THETA(3)=SLOPE OF CLEARANCE VS WEIGHT RELATIONSHIP
;SCALING PARAMETER=VOLUME/WT SINCE DOSE IS WEIGHT-ADJUSTED
  CALLFL=1
  KA=THETA(1)+ETA(1)
  K=THETA(2)+ETA(2)
  CL=THETA(3) *WT+ETA(3)
  SC=CL/K/WT
$THETA (.1,3,5) (.008,.08,.5) (.004,.04,.9)
$OMEGA BLOCK(3) 6 .005 .0002 .3 .006 .4
$ERROR
  Y=F+EPS(1)
$SIGMA .4
$EST
        MAXEVAL=450 PRINT=5
$COV
STABLE
               ID DOSE WT TIME
$SCAT
                (RES WRES) VS TIME BY ID
```


A bit like this really

orimo

```
SPROB THEOPHYLLINE
                    POPULATION DATA
$INPUT
           ID DOSE=AMT TIME CP=DV WT
SDATA
           THEOPP
$SUBROUTINES ADVAN2
SPK
;THETA(1)=MEAN ABSORPTION RATE CONSTANT (1/HR)
;THETA(2)=MEAN ELIMINATION RATE CONSTANT (1/HR)
;THETA(3)=SLOPE OF CLEARANCE VS WEIGHT RELATIONSHIP
;SCALING PARAMETER=VOLUME/WT SINCE DOSE IS WEIGHT-ADJUSTED
  CALLFL=1
  KA=THETA(1)+ETA(1)
  K=THETA(2)+ETA(2)
  CL=THETA(3)*WT+ETA(3)
  SC=CL/K/WT
$THETA (.1,3,5) (.008,.08,.5) (.004,.04,.9)
$OMEGA BLOCK(3) 6 .005 .0002 .3 .006 .4
SERROR
  Y=F+EPS(1)
$SIGMA .4
SEST
        MAXEVAL=450 PRINT=5
SCOV
STABLE
                ID DOSE WT TIME
$SCAT
                (RES WRES) VS TIME BY ID
```

```
\documentclass[a4paper]{article}
\usepackage{graphicx}
\title{Example of \LaTeX}
\author (E. Niclas Jonsson \and Justin J Wilkins)
\begin{document}
\maketitle
\section {Introduction}
Add some text of introduction.
\section{Methods}
Some methods.
\section{Results}
The results can be seen in Figure~\ref{fig:results}.
\begin{figure}
\includegraphics{myPlot}
\caption{This is the caption.} \label{fig:results}
```

\end{figure}

The end product is a PDF file

- No "standard" Office document is involved in the report generation process.
- In many organizations the final report version is a PDF.
- PDFs can (almost) be converted to Microsoft Word
 - Possibly useful for the review process...
 - > Not for the final document since it *breaks the traceability chain*!

And now, a live demonstration! Because we know you won't believe us when we tell you it's easy.

Conclusions

Reproducible Research methodology:

- improves consistency and efficiency of pharmacometric analyses and report generation.
- is not particularly difficult to implement.
- enhances both technical and scientific quality.

Come visit us in our booth!

