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Sources: 
Fuchs et al. Clin Pharmacokinet 2013 

http://campus.usal.es/~galenica/clinpkin/software.htm* start/end dates are approximate
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Introduction

Clinical analytics Continuous learningEMR integration
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1. user interface (UI/UX)
2. education / support
3. integration with hospital systems (EHR)
4. funding 
5. prove cost/benefit
6. regulatory 
7. science

challenges to successful adoption

https://www.youtube.com/watch?v=CClMA7FCpX0
ACoP preconference 2018
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1. model selection

2. individual fit

3. between-occasion variability

4. beyond exposure

themes of this talk



1
model selection
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“How do I know this model 
works for my patients?”

model selection
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• even when right age class, assumptions:
• trial population == new population

• parameter distribution
• covariate effects 
• error magnitude

• no bias data collection / analysis
• drug administration
• drug assay
• creatinine assay
• etc…

model selection
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model selection: retrospective evaluation

• Pull data from EMR
demographics + dosing + TDM

• Implement candidate models

• Perform predictive checks
population-level / individual level
a priori / a posteriori
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model selection: a priori evaluation

Manuscript in preparation.
Collaboration with Radboud Applied Pharmacometrics Group

(R ter Heine, E Svensson, R Aarnoutse, R Bruggeman)
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model selection: a posteriori evaluation

Similar functionality available in proseval (PsN)

Manuscript in preparation.
Collaboration with Radboud Applied Pharmacometrics Group

(R ter Heine, E Svensson, R Aarnoutse, R Bruggeman)

subject 1 subject 2
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model selection: retrospective evaluation
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model selection: retrospective evaluation

goal = fit for purpose



2
individual fit
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“Why is the fit for this patient off?”

individual fit
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individual fit: outlier subject

fit to TDM data

●

●

0

25

50

75

100

125

0 20 40 60
time

co
nc
en
tra
tio
n

ipred

pred



1717

individual fit: outlier subject

fit to TDM data
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individual fit: parametric prior-adjustment

distribution of η fit to TDM data
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individual fit

Apply with care!

overfitting
inter-occasion variability
regression to the mean
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individual fit: non-parametric prior-adjustment

Jelliffe and Neely. Individualized Drug Therapy for Patients
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individual fit: non-parametric prior-adjustment
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Individual fit: model updating

Implement
PK model

use in practice 
e.g. with flattened priors 
for extreme subjects

collect data

refine model
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inter-occassion variability
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“I saw this patient last month, 
can we use the knowledge 

learned from his previous visit?”

Inter-occasion variability
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“Use of individual estimates specific to a previous occasion lead to 
reduced predictive power in forecasting future exposure” 1

inter-occasion variability

1. Abrantes J et al. PAGE 2017
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• what is occasion?
• “visit”
• “treatment cycle”
• “1 day” 
• “arbitrary n days”

• often not defined specifically in original paper
• not always matching clinical practice

inter-occasion variability
first issue
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inter-occasion variability: models including IOV
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inter-occasion variability

subject 2

long-term data is common
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inter-occasion variability
when no IOV reported: ignore IOV, but weigh data with time
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inter-occasion variability
when no IOV reported: ignore IOV, but weigh data with time
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“I saw this patient last month, 
can we use the knowledge 

learned from his previous visit?”

Inter-occasion variability



4
beyond exposure
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“Cmin should be 15-20 mg/L to be effective”

“If Cmin >20 then 5x higher nephrotoxicity”

Exposure-outcome relationships

1) A-K Hamberg and RJ Keizer. Ther Drug Monit. 2017 Jun;39(3):303

• subjective, qualitative, usually ROC-based1

• population-dependent

https://www.ncbi.nlm.nih.gov/pubmed/?term=hamberg%5Bau%5D+keizer%5Bau%5D
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Exposure-outcome relationships
binary decision rules
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Exposure-outcome relationships
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Exposure-outcome relationships
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Exposure-outcome relationships
Instead of binary exposure rules:

regimen AUC24 Ctrough efficacy toxicity
1000 mg q12 400 10 50 % 5 %
1500 mg q12 600 15 75 % 13 %
2000 mg q12 800 20 82 % 30 %
1000 mg q8 600 18 80 % 20 %

• allows individualization on PD, toxicity, outcome, as well as on PK

Example table
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Exposure-outcome relationships

Exposure target attainment

Improved outcome /
Reduced toxicity

Medical aim

Pharmacological aim

Reduced costs Financial aim
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