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Lewis Sheiner1,2

1 Sheiner LB, CPT, v56 ,1994.
2 Sheiner LB, JASA, v92, 1997.
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• 254 patients in acute pain after surgical procedure 
(molar extraction) in 6 dose arms

• ~8 observations within 6 hours recorded upon 
questioning

Pain relief: 0-4 scale = 5-point scale

• 231 patients in chronic pain from distal diabetic 
neuropathy in placebo arms

• ~100 daily observations during 18 weeks recorded 
in a diary

Pain scores: 0-10 scale = 11-point scale1,2

The data 
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The message

Showed increasing interest for discrete data & highlighted 
challenges linked to such data-type

Proposed solutions to model discrete data & implemented 
them fornon-linear mixed effects

Pointed out that the different characteristics of the data 
should be diagnosed & addressed 
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The ordered categorical model
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• 254 patients in acute pain after surgical procedure 
(molar extraction) in 6 dose arms

• ~8 observations within 6 hours recorded upon 
questioning

Pain relief: 0-4 scale = 5-point scale

• 231 patients in chronic pain from distal diabetic 
neuropathy in placebo arms

• ~100 daily observations during 18 weeks recorded 
in a diary

Pain scores: 0-10 scale = 11-point scale1,2
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Number of parameters = M-1
● Because modeled:
● And by definition:

���� Supporting information needed
● So: all categories must be represented in the population

● Otherwise: only a few categories can be described1

���� Extra parameters limited
● So: only a few complex features can be considered2

● Otherwise: risk of overparameterization

Limitations due to number of points?

� Y�	 
 0 � 1

1 Kamal MA, JPharmSci, v99, 2010.
2 Byon W, JClinPharm, v50, 2010.

� Y�	 
 1 ,…, � Y�	 
 M
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Assumptions linked to observations?

Statistical independence assumed
● Because: 
● Probabilities calculated disregarding previous predictions

���� Clustering, trends or patterns ignored
● i.e. serial correlation phenomenon

● Not often detected, nor easily addressed

���� Model features addressing dependence needed
● e.g. Markov components, AR(1), etc. inclusion

● Otherwise: risk of model misspecification

� Y�	|Y�#	(�$ � � Y�	
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Individual data
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To explore and develop platform models and 
modelling techniques adapted to fit real pain 
scores, i.e. data presenting the characteristics:

General aim

Interval-
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course

Serial 
correlation
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Specific aims 

● To investigate alternative approaches to the ordered 
categorical model through simulations (assuming as the 
true model the ordered categorical model)

● To develop and fit to the real pain scores:

● To propose model diagnostics adapted to pain scores data

1 count 
model 2 continuous models
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Count approach

Probability distribution � Truncated distribution
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Mean Mean

Count approach

Probability distribution � Truncated distribution

Poisson distribution � Generalized Poisson1,2

� Y�	 � m � � Y�	 � n∑ � Y�	 � n�+,�+

� Y�	 � m � λ�#1 " δ�$ ∙ λ� 1 " δ� �m ∙ δ� �(�∙ e( 0� �(1� 2�∙1�m!

1 Consul P, 1989.
2 Gschlossl S, StatPap, v49, 2008.
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Continuous approach

Function transformation: Logit-transformation [0,1]

Rescaling: Residual error on logit scale [-0.5,10.5] 

Rounding 

logit#λ�$ � ln λ�1 " λ�

Y�	 � 11 ∙ e�����#0�$24��1 � e�����#0�$24�� " 0.5 ε�	~9#0, σ<$
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Simulation study

100 Simulations 100 Estimations 100 Re-simulations
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Compare different approaches, alternatives to the 
ordered categorical model (taken as true model):

Cumulative probabilities
of the scores



Simulation results
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Logit-transformationTruncation
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Part II

Part III

Exponential decay

Logit-transformationTruncation



Placebo effect: Exponential decay

Count and continuous models

λ�	 � BASE� ∙ 1 " PE�BC� ∙ 1 " e (�,#<$DE�F/H�∙��
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Placebo effect: Exponential decay

Estimation results

Count model Continuous model

TV 
(RSE %)1

CV % [Shη %] 
(RSE %)1

TV [Shε %]
(RSE %)2

CV % [Shη %] 
(RSE %)2

BASE (Score) 6.2 (17) 33 [11] (2) 6.2 (21) 32[3] (14)

PEmax (%) 18.9 (8) 572 [21] (4) 19.8 (42) 761 [12] (20)

PEt1/2 (days) 27.8 (9) 89 [49] (6) 32.3 (69) 129[37] (27)

δ (dispersion) -1.5 (0.8) -100[48] (3) - -

σ (SD of ε) - - 1.8 [16] (12) -

λ�	 � BASE� ∙ 1 " PE�BC� ∙ 1 " e (�,#<$DE�F/H�∙��

1, from bootstrapping; 2, from Monte Carlo importance sampling
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Model diagnostics

Count model
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Continuous model

Model diagnostics1,2
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1 Karlsson MO, PAGE17, A1434, 2008.
2 Hooker AC, Pharm Res, v24, 2007.
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Exponential decay

Logit-transformationTruncation
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Part III

Exponential decay

Logit-transformation

Markov AR(1)
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Count model

Simulations
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Count model

Markov components1,2 (1st-order)
● Transition inflation

πJ � � |Y�	 " Y� 	(� | � z 	, z=0, ± 1, ± 2, ± 3 π+ � M π+|+, π+|N, π+|�+, η�, τ+, t	

Transitions between scores
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� Y�	 � mP Y�	 " Y� 	(� � z � 	πJ � 1 "
 π�Q
��+ ∙ � Y�	 � m

1 Troconiz IF, JPKPD, v36, 2009.
2 Silber HE, JPKPD, v36, 2009.
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First continuous model

Corr ε�	, ε�� � e(�,#<$TU�F/H∙ �V(��

Autocorrelated errors1,2

● Autoregressive time series AR(1)
(Continuous-time correlation between residual errors) 
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1 Silber HE, JPKPD, v36, 2009.
2 Karlsson MO, JPKBio, v23, 1995. 26/35



Second continuous model 

Stochastic process1,2

● Stochastic Differential Equations (SDEs)
(Drift incorporated as a standard Wiener process)y � XY � εZ[ � \�]\�]^ � ω`

1 Overgaard RV, JPKPD, v32, 2005.
2 Tornoe CW, PharmRes, v22, 2005.
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Serial correlation results

Count model Continuous models

Serial 
correlation

Markov AR(1) SDE

∆OFV 11,000 2,000 1,800

df 13 1 2

Measure
Probabilities of 

inflation
Autocorrelation 

half-life
Variance of the drift

Value Up to 55% 0.93 day
0.038 score2/day on

logit scale
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Model diagnostics
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Model diagnostics
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Model diagnostics
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Model diagnostics
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Exponential decay

Logit-transformationTruncation

Outline 

Exponential decay

Logit-transformation

Markov AR(1)

Truncation

SDE
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+ -+ -

Discussion

Truncated count Logit-transf. continuous
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Conclusions

Pain modelling = challenging, but:
● 11-point scales accurately treated with a truncated count or 

a transformed continuous approach 
● Real pain scores satisfactorily handled with 3 novel models 

(all handling serial correlation detected in observed data)

● All processes implemented in NONMEM 

Integrated data characteristic inspection and model 
diagnostics are key steps in model development.
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