GPU-based Parallelized Quasi-random Parametric Expectation Maximization (QPREM) Estimation Algorithm for Population Data Analysis

Chee M Ng, PharmD, PhD, FCP

Outlines

- What is GPU and why do we want to use it?
- What is QRPEM and why QRPEM for GPUcomputing?
- Example of first GPU-based QRPEM estimation method for population PK/PD data analysis

What is GPU

• GPU= Graphic Processor Unit

- Chip in computer video cards, PlayStation 3, Xbox, etc.
- Two major vendors: NVIDIA and ATI (AMD)
- Originally designed for maximum performance in numerical intensive image processing (modern games)
- GPUs are massively multithreaded many-core chips

NVIDIA Quadro FX 5800 GPU card

- * 240 parallel processing cores
- * 930 GFLOPS sustained performances vs.
 106 GFLOPS for Intel Core i7 975XE (3.3GHz)

Comparison Between Computer CPU and GPU

The GPU is specialized for compute-intensive, highly parallel computation

So, more transistor can be devoted to data processing rather than data caching and flow control

Control	ALU	ALU
	ALU	ALU
Cache		
DRAM		
CPU		

ALU – arithmetic logic unit that performs arithmetic and logical operations

CUDA Programming Guide

Why GPU?

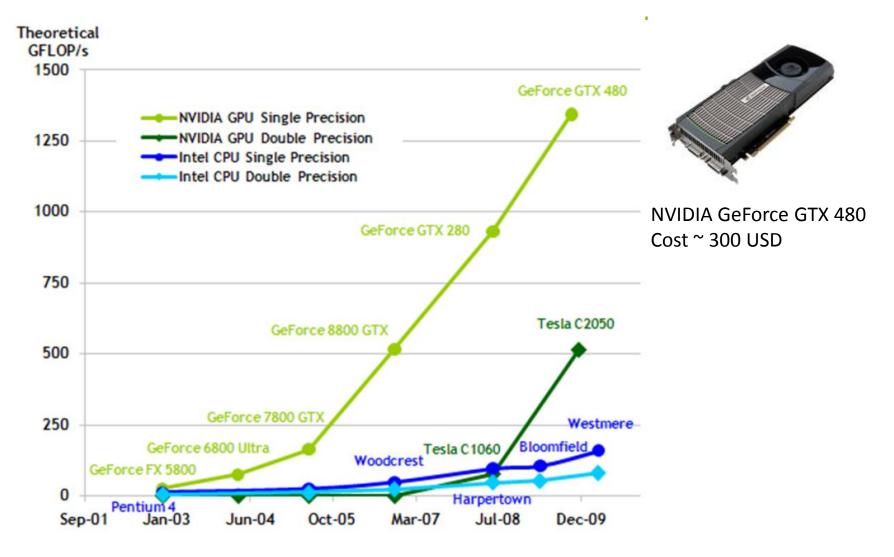
PRO

- Fast
- Cheap
- Low-power

CONS

- Specialized
- Hard to program
- Rapidly changing

GPU's are Much Faster Than CPU's



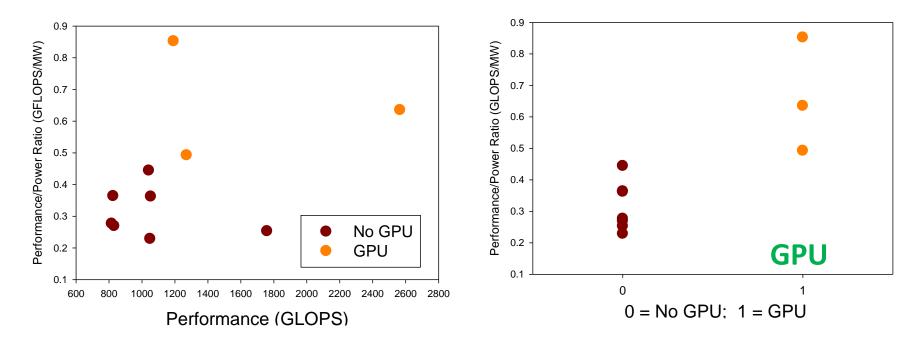
Fastest Supercomputer in the World is Powered by GPU Technology

Tianhe-1A system in China 2.57 PFLOPS (10¹⁵ floating point calculations per second) !

7,168 NVIDIA Tesla M2050 GPUs + 14, 366 CPUs

Power Efficiency of the Supercomputer Performance/Power Ratio

Supercomputers powered by GPU-computing technology are more energy efficient (GREEN- COMPUTING)



Three of the World's Top Five Supercomputers are Powered by GPUcomputing Technology

Data from Source: http://www.top500.org/list/2010/11/100

Why GPU?

PRO

- Fast
- Cheap
- Low-power

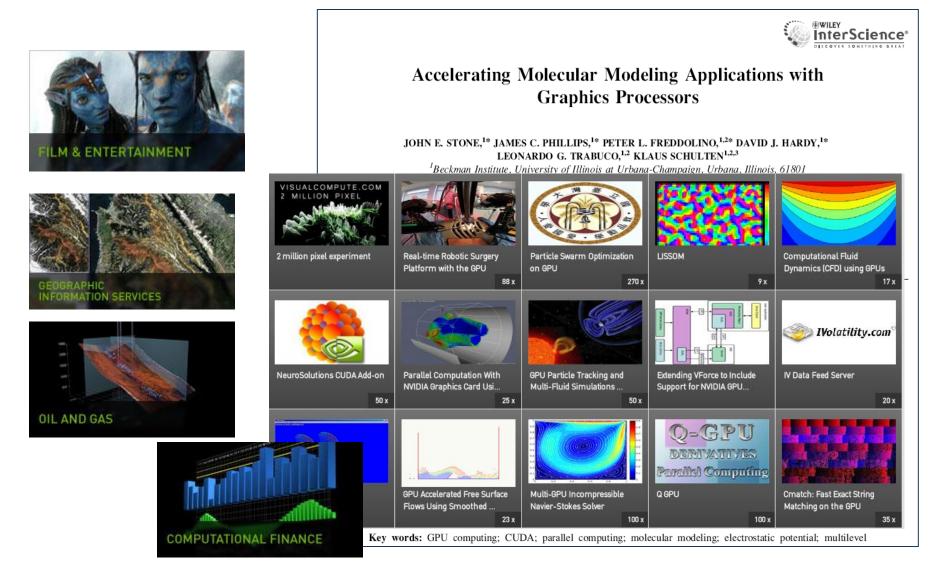
CONS

- Specialized
- Hard to program
- Rapidly changing

GPU Computing Today: CUDA

- Compute Unified Device Architectures (CUDA)
 - C programming language on GPUs
 - Access to native instruction and memory
 - Requires no knowledge of graphic APIs or specific GPU programming
 - Developed by NVIDIA; Stable, available (for free), documented and supported for both Linux and Windows
 - Geared towards scientific programming
- GPU is now a "Computational Coprocessor"

Successful Stories of GPU Computing



What is QRPEM and Why QRPEM for GPU Computing?

Two-stages (Parametric) NLME Estimation Methods Used in the Population PK/PD Data Analysis

- Approximate Methods
 - FO/FOCE (NONMEM) and ITS
- Exact "Likelihood" Methods

Gaussian Quadrature and Importance Sampling

EM – MCPEM (S-ADAPT and NONMEM), SAEM (Monolix, S-ADAPT and NONMEM), and QRPEM

NLME – Nonlinear mixed-effect model FO – First-order; FOCE – First-order Conditional Estimation; ITS – Iterative 2-stages ; SAEM - Stochastic Approximation EM; MCPEM – Monte-Carlo Parametric EM; QRPEM – Quassi-random Parametric EM – Parametric EM

Exact "Likelihood" Methods are Performed Better Than or Equal to the Methods That Approximated the Likelihood

Pascal Girard and France Mentré . A comparison of estimation methods in nonlinear mixed effects models using a blind analysis. **PAGE 14 (2005) Abstr 834**

The AAPS Journal 2007; 9 (1) Article 7 (http://www.aapsj.org).

Themed Issue: Bioinformatics and Computational Advances in the Pharmaceutical Sciences Guest Editor - Murali Ramanathan

A Survey of Population Analysis Methods and Software for Complex Pharmacokinetic and Pharmacodynamic Models with Examples Submitted: November 9, 2006; Accepted: January 13, 2007; Published: March 2, 2007

Robert J. Bauer,¹ Serge Guzy,¹ and Chee Ng²

¹Pharmacokinetics, Pharmacodynamics, and Bioinformatics, XOMA (US) LLC, Berkeley, CA ²Institute for Drug Development/Cancer Research and Therapy Center, San Antonio, TX

EM-based "Exact-likelihood" Estimation Methods Were Used Successfully in Developing Population PK/PD Model

MCPEM

Pharmaceutical Research, Vol. 22, No. 7, July 2005 (© 2005) DOI: 10.1007/s11095-005-5642-4

Research Paper

Pharmacokinetic-Pharmacodynamic-Efficacy Analysis of Efalizumab in Patients with Moderate to Severe Psoriasis

Chee M. Ng,^{1,3} Amita Joshi,¹ Russell L. Dedrick,² Marvin R. Garovoy,² and Robert J. Bauer²

SAEM

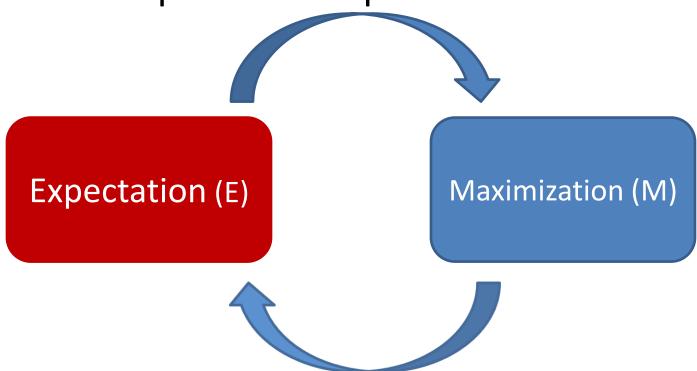
Estimation of Population Pharmacokinetic Parameters of Saquinavir in HIV Patients with the MONOLIX Software

Marc Lavielle^{1,3} and France Mentré²

JPP 2007

Expectation Maximization (EM) Estimation Method for Population Data Analysis

Iterative optimization process



Repeat E and M steps until population parameters no longer change (Maximum Likelihood is reached)

Expectation Maximization (EM) Algorithm: Expectation (E) Step

- The most computational intensive step in the EM
- Goal: to obtain individual conditional mean (mode) and variance-covariance matrix that used to update the population parameters in maximization (M) steps

Individual Conditional
Mean
$$\overline{\theta_{i}} = \frac{\int_{-\infty}^{+\infty} \theta p(y_{i}, \theta \mid \mu, \Omega) d\theta}{\int_{-\infty}^{+\infty} p(y_{i}, \theta \mid \mu, \Omega) d\theta}$$

Expectation Maximization (EM) Algorithm: Maximization (M) Step

• Updating the population parameters

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \overline{\theta_i}$$
$$\Omega = \frac{1}{n} \sum_{i=1}^{n} (\overline{\theta_i} - \mu)(\overline{\theta_i} - \mu)' + \frac{1}{n} \sum_{i=1}^{n} \overline{B_i}$$

 μ = Population Mean; Ω = Population variance; θ_{I} = Individual conditional mean; B_I = individual variance-covariance matrix

EM Algorithm and Parallel Computing

- The EM algorithm is suitable for parallel computing because in the most computational intensive E step:
 - The conditional mean and variance of each subject
 - Generated random samples used to obtain the conditional mean and variance for each individual (Stochastic EM)
- <u>Are independent from each others</u>, and therefore can be evaluated separately!

EM Algorithm and Parallel Computing

The computation of the E step in the EM algorithm can be parallelized based on

- **1. Subject** (Parallel computing of MCPEM in S-ADAPT/NONMEM)
- 2. Generated random numbers within each subject (GPU-based MCPEM)

First prototype of the GPU-based EM method (MCPEM using pseudo random number generator ; workstation with Tesla GPU) for population data analysis [ACOP 2011]

The Children's Hospital of Philadelphia[®] Hope lives here. Novel GPU Parallelization of Monte-Carlo Parametric Expectation Maximization Estimation Algorithm for Population Data Analysis

Chee M Ng

Division of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia; Philadelphia, PA Department of Pediatric, School of Medicine, University of Pennsylvania, Philadelphia, PA

Classification of EM Estimation Methods for Population Data Analysis (Based on E-step)

• Deterministic

- Gaussian Quadrature
- Stochastic
 - * Sampling techniques
 - 1. Monte-Carlo

Direct Sampling (S-ADAPT), Rejection Sampling (SADAPT), Importance Sampling (MCPEM in S-ADAPT/NONMEM), Stratified Sampling, Recursive stratified sampling, VEGAS, and others

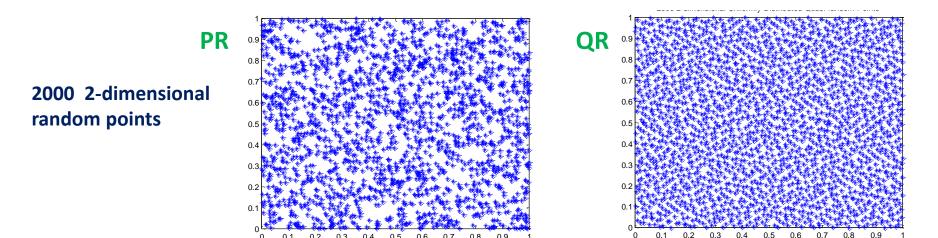
- 2. SAEM (MCMC) [Monolix/S-ADAPT/NONMEM]
- * Random Number Generation
 - 1. Pseudo-random (PR)
 - 2. Quasi-random (QR)

QR – **Quasi-random**

The QR sampler can be used by many sampling techniques such as importance and direct sampling PEM – Parametric Expectation Maximization

Why QRPEM

- Evaluation of the E-step in stochastic EM methods (MCPEM) required the computation of multi-dimensional integrals
- For pseudo-random (PR) number, the estimation error of the integrals will decrease at the rate of N^{-1/2} (Error decay rate).
- Quasi-random (QR) sequence (low discrepancy sequences): In optimal case, QR has a much better decay rate of N⁻¹.
- To reduce the error by a factor of 10 → increase PR number by 100 x the number of simulation N, and in theory only needed ~ 10 X for QR



Source: Niederreiter 1992; Morokoff 2000; Birge 1995; Leary 2011

GPU-based QRPEM for Population PK/PD Data Analysis

- A single laptop computer equipped with an INTEL Core i7-920 Extreme Quad-core processor (2GHz) and
- NVIDIA Quadro FX3800M video graphic card with 128 stream processors

GPU-based QRPEM Heterogeneous Computing

Computing with CPU and GPU

GPU

M Step

CPU

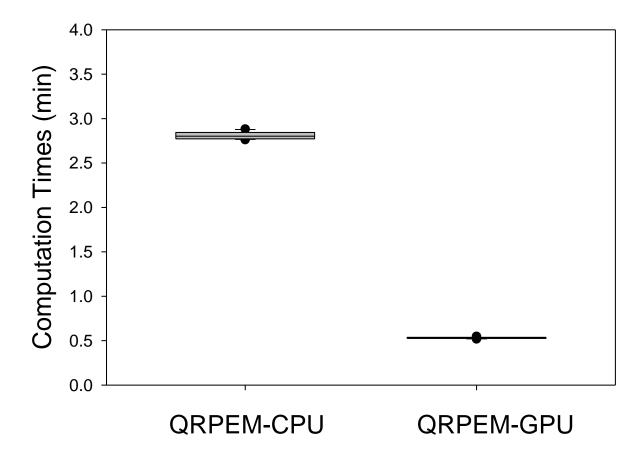
E steps + partial derivatives of the intra-individual variance matrix

The GPU-based MCPEM (QRPEM-GPU) was developed using MATLAB R2009a and JACKET[®] GPU toolbox with NVIDIA CUDA GPU computing toolbox (3.2)

Simulated Data for Assessment of QRPEM-GPU Performance

- A one-compartment IV bolus PK model with intensive sampling schedule
 - Inter-subject variability: Log-normal distributed
 - Intra-subject variability: Proportional error model
 - Five system parameters (CL, V, IIV_CL, IIV_V and Sigma)
 Number of simulated trial = 100
- Number of simulated subjects for each trial: 25, 50, 100, and 150
- Number of QR (Sobol sequences with scrambling) direct random samples: 500, 1000, 2000, 5000, and 10000
- The results were compared to those obtained from a identical QRPEM method developed and executed in a INTEL CPU (QRPEM-CPU)

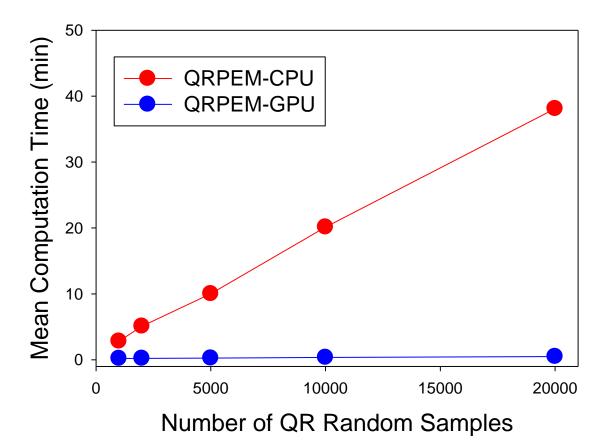
QRPEM-GPU Achieved Model Convergence Faster Than QRPEM-CPU



Number of Simulated Trial = 100; Number of simulated subject per trial = 100; Number of QR Samples for E step: 1000; Number of MCPEM iteration = 30

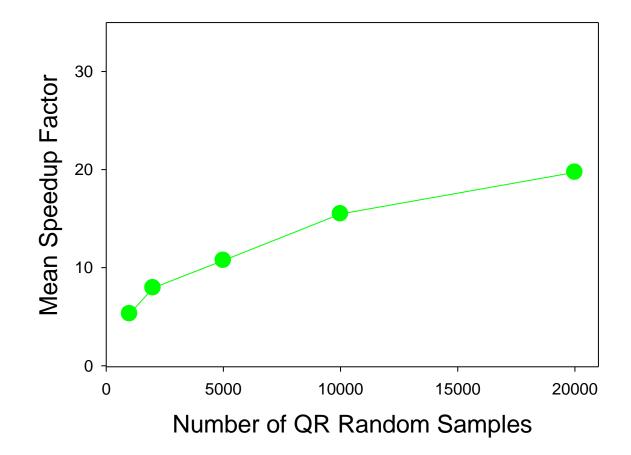
Performance of the QRPEM-GPU Mean Model Converging Times vs. Number of QR Random Samples

• QRPEM-GPU has a better scaling relationships between mean model converging times and number of QR random samples



Speedup Factors of the QRPEM-GPU Increased in Proportional to the Number of Monte-Carlo Random Samples

QRPEM-GPU was ~20-folds faster than QRPEM-CPU in achieving model convergence when 20000 of QR random samples was used



Speedup factor = Model converging time of QRPEM-CPU/Model Converging Time of QRPEM-GPU

The Precision and Bias of the Final Model Parameters Were Comparable for Both QRPEM Algorithm

	CL	V	IIV_CL	IIV_V	Sigma
Precision (MAPE)					
QRPEM-CPU	4.9	5.3	3.0	5.1	2.3
QRPEM-GPU	4.9	5.3	3.0	4.7	2.2
Bias (MPE)					
QRPEM-CPU	4.9	5.3	0.36	-0.15	1.5
QRPEM-GPU	4.9	5.3	0.13	-0.29	1.5

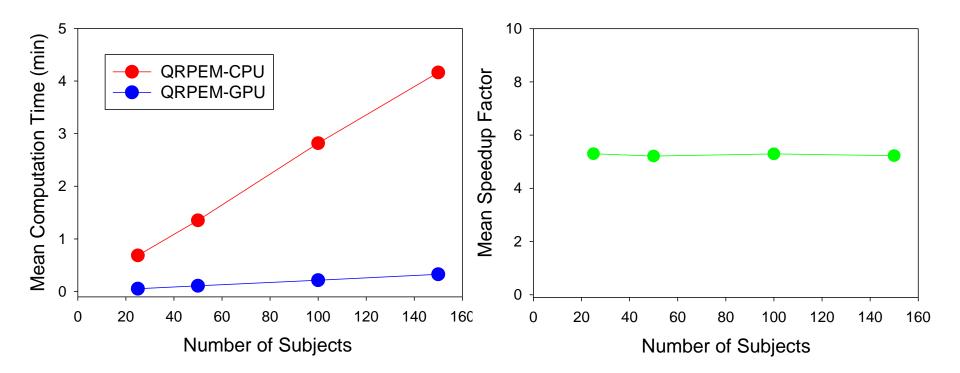
$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left[\left| \frac{(\theta_i - \theta_{itrue})}{\theta_{itrue}} \right| \times 100 \right] \qquad MPE = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{(\theta_i - \theta_{itrue})}{\theta_{itrue}} \times 100 \right]$$

n: Number of simulated trials (=100); θ_i : Model estimated values; $\theta_{i_{true}}$: True reference values

Number of Simulated Trial = 100; Number of simulated subject per trial = 100; Number of QR Samples for E step: 1000; Number of MCPEM iteration = 30

Performance of the QRPEM-GPU

Mean Model Converging Times vs. Number of Subjects



Number of Simulated Trial = 100; Number of QR Samples for E step: 1000; Number of MCPEM iteration = 30

Conclusions

- To my best knowledge, this is the first GPUbased parallelized QRPEM algorithm developed and reported in the literature for population PK data analysis
- Innovative, GPU-oriented approaches can lead to vast speed-up, and reduce data analysis and model development times

Future Works

- A study is ongoing to
 - expand the capability of the estimation algorithm in using parallel differential equation solver to develop complex population PK/PD model ; Multiple doses; Model converging criteria for likelihood ratio test
 - improve the efficiency of the algorithm either through further parallelization of the program codes or with multiple GPU processors

University of Pennsylvania/Children Hospital of Philadelphia NVIDIA CUDA Research Center

- Medical imaging analysis (DCI-MRI) in assessing the pharmacodynamic of the studied drug in preclinical/clinical studies
- GPU-based global optimization algorithm (GA/pattern-search) for complex PK/PD data analysis (Ng CM. ACOP 2010)
- GPU-based NLME Estimation method for population data analysis
- Machine learning/Artificial intelligent/Rule-based PK/PD/disease model development

• Others