

EVALUATION OF FISHER INFORMATION MATRIX USING GAUSSIAN QUADRATURE IN NONLINEAR MIXED EFFECTS MODELS Application to dose-response trials

Thu Thuy Nguyen, France Mentré University Paris Diderot, Sorbonne Paris Cité, INSERM UMR 738, Paris, France

BACKGROUND

- **Dose-response studies**: Importance of identifying the right dose
- Two main analysis approaches: multiple comparisons between doses or modelling [1]
- Modelling: more flexible, increasingly performed in drug development
- Specific case: several doses evaluated for each patient
- ⇒ Modelling through nonlinear mixed effects models (NLMEM)

• Importance of choice of design

- Trial with one dose/patient: methods to choose robust efficient design for estimating the minimum effective dose already proposed [2]
- Trial with several doses/patient: how to choose appropriate population design? (the number of patients ? the number of doses ? which doses ?)
- ⇒ Increasingly important step: to choose appropriate designs for NLMEM
- Design evaluation and optimisation in NLMEM
- Simulations : time consuming, limited number of designs evaluated
- Population Fisher information matrix (M_F)
- * M_F for NLMEM, using first order approximation of the model [3,4]: implementation in R function PFIM [5,6] and in other software

EVALUATION BY SIMULATION

• Simulation example

- Dose-response trial with several doses/patient * Sigmoid Emax model
- * $\omega = 0.3$ for all parameters
- * $\sigma_{\text{inter}} = 2$, $\sigma_{\text{slope}} = 0$
- Design
- * N = 100
- * n = 4 doses/patient (0, 100, 300, 1000)
- Two simulation scenarii 1000 trials of 100 patients * $\gamma = 1$ or $\gamma = 3$

Evaluation method

Comparison of relative standard errors (RSE) between different approaches for each scenario

- Predicted RSE from M_F by linearisation in PFIM: RSE_LIN
- Predicted RSE from M_F by Gaussian quadrature: RSE_GQ
- Empirical RSE from repeated simulations: RSE_EMP On 1000 datasets of 100 subjects:
- * Estimation of parameters by SAEM algorithm [12] in MONOLIX 3.2 [13]
- * Empirical standard error = sample estimate of the standard deviation from parameter estimates \Rightarrow RSE_EMP
- \Rightarrow **RSE_LIN vs. RSE_GQ vs. RSE_EMP**

RESULTS

- * Adequacy of the linearisation: influenced by model nonlinearity [7]
- \Rightarrow Possible alternative approach: Gaussian quadrature [8]

MOTIVATING EXAMPLE

 $E = E\mathbf{0} + \frac{Emax \times dose^{\gamma}}{Emax}$

 $D50^{\gamma} + dose^{\gamma}$

- A dose-response study [9]
- Sigmoid Emax model
- **Parameters** E0 = 5, Emax = 30, D50 = 500 mg, $\gamma = 1$ or 3 – Dose-response curves with $\gamma = 1$ (left) and $\gamma = 3$ (right)

OBJECTIVES

- To propose a method to evaluate M_F in NLMEM without linearisation, based on Gaussian quadrature
- To evaluate this new method by simulation and compare it to first order approximation for this doseresponse sigmoid Emax model with various nonlinearity levels ($\gamma = 1$ or 3)
- To illustrate the use of this new method for studying the impact of several designs on D50 precision

 $-\gamma = 1$: adequate prediction of RSE by LIN and GQ, close to EMP

COMPUTING M_F IN NONLINEAR MIXED EFFECTS MODELS

Notation

– Design

- * N patients *i*
- * n_i doses in patient i
- * $\xi_i = (d_{i1}, ..., d_{ij}, ..., d_{in_i})$ = elementary design in patient *i* * $\Xi = \{\xi_1, ..., \xi_i, ..., \xi_N\}$ = population design
- Nonlinear mixed effects model
- * Individual model $y_i = f(\phi_i, \xi_i) + \epsilon_i$
- · Random error $\epsilon_i \sim \mathcal{N}(0, \Sigma_i); \Sigma_i = \text{diag}(\sigma_{\text{inter}} + \sigma_{\text{slope}} f(\phi_i, \xi_i))^2$
- · Individual parameter ϕ_i
- * Random effect model $\phi_i = g(\mu, b_i) = \mu \exp(b_i); b_i \sim \mathcal{N}(0, \Omega)$, diagonal Ω
- * Population parameter Ψ (size P)
- · Fixed effects μ
- · Variance terms $\lambda = \{ \text{variances } \omega^2 \text{ of random effects in } \Omega, \sigma_{\text{inter}} \text{ and/or } \sigma_{\text{slope}} \}$

Fisher information matrix

- Likelihood expressed as an integral $L(y_i; \Psi) = \int p(y_i|b_i; \Psi) p(b_i; \Psi) db_i$
- $-M_F$ for elementary design ξ_i
- $-M_F$ for population design Ξ

$$M_F(\Psi;\xi_i) = \mathbb{E}\left(\frac{-\partial^2 \log L(y_i;\Psi)}{\partial \Psi \partial \Psi'}\right)$$
$$M_F(\Psi;\Xi) = \sum_{i=1}^N M_F(\Psi;\xi_i)$$

– No analytical form for the likelihood *L* in nonlinear models

• Computing M_F by linearisation (LIN)

– Likelihood approximation using first order expansion of *f* about random effects taken at 0 [3,4]

$$y_i \approx f(g(\mu, 0), \xi_i) + \left(\frac{\partial f'(g(\mu, b_i), \xi_i)}{\partial b_i}\right)_{b_i = 0} b_i + \epsilon_i$$

 $-\gamma = 3$: over-prediction of RSE of fixed effects by LIN; adequate prediction by GQ, close to EMP large empirical RSE for ω_{γ}^2 > asymptotic predictions

ILLUSTRATION FOR DOSE-RESPONSE TRIAL

• Objective

To illustrate the use of the new method based on Gaussian quadrature for studying the impact of several designs on D50 precision

Comparison between 4 designs for $\gamma = 1$ and $\gamma = 3$

- Predicted RSE (D50) (%)
- Criterion = $det(M_F)^{1/P}$

from M_F computed by Gaussian quadrature

• Results

Studied designs				
	\boldsymbol{N}	n	<i>n_{tot}</i>	Doses
	100	7	700	(0, 100, 300, 500, 700, 900, 100
	100	4	400	(0, 100, 300, 1000)
	100	2	200	1/6 (0, 100)
				1/6 (0, 300)
				1/6 (0, 1000)
	200	2	400	1/6 (100, 300)
				1/6 (100, 1000)
				1/6 (300, 1000)

– The richer is the design, the larger is the criterion, the more precise is the estimation of D50

- Analytical expression for *L*
- Mathematical derivations of $L \Rightarrow$ Expression of $M_F(\Psi, \xi_i)$: block diagonal matrix

$$M_F(\Psi;\xi_i) = \begin{pmatrix} M_F(\mu;\xi_i) & 0\\ 0 & M_F(\lambda;\xi_i) \end{pmatrix}$$

– Implemented in PFIM [6] and several other software

- Computing M_F by Gaussian quadrature (GQ)
- Defining $\eta_i = \Omega^{-1/2} b_i$, then $\eta_i \sim \mathcal{N}(0, I)$, $L(y_i; \Psi) = \int p(y_i | \eta_i; \Psi) p(\eta_i; \Psi) d\eta_i$

– Integration by quadrature rule, using Gauss-Hermite nodes η_{ik} and weights w_k [10,11] $L(y_i; \Psi) \approx \sum_{k=1}^{\infty} w_k p(y_i | \eta_{ik}; \Psi)$

– Mathematical derivations of $L \Rightarrow$ Expression of $M_F(\Psi, \xi_i)$ without linearisation

 $M_F(\Psi;\xi_i) = \begin{pmatrix} M_F(\mu;\xi_i) & M_F(\mu,\lambda;\xi_i) \\ M_F(\lambda,\mu;\xi_i) & M_F(\lambda;\xi_i) \end{pmatrix}$

– Implementation in a working version of PFIM

(using function gauss.quad of R package statmod, 20 nodes)

- The design (100,4) is better than the design (200,2); RSE(D50) when $\gamma = 3 < \text{RSE}(D50)$ when $\gamma = 1$

DISCUSSION

• Summary

- Approaches to compute M_F for designing in NLMEM
- * Linearisation approach:
- moderate nonlinearity level: ok
- high nonlinearity level: problem
- * New alternative approach based on Gaussian quadrature: avoiding linearisation, giving adequate prediction of SE
- Dose-response trials with several doses/patient analysed through NLMEM can be designed using Gaussian quadrature
 - * Requiring the knowledge of the model and its parameters
 - * Complementary approaches: robust approach, sensitivity analysis, adaptive design

• **Prospects**

- Further evaluation of the new approach with more complex models + link to optimisation
- Implementation in a future version of PFIM \Rightarrow useful tool to design dose-response trials

[1] Bretz et al. *Biometrics*, 2005 [2] Dette et al. JAm Stat Assoc, 2008. [3] Mentré et al. *Biometrika*, 1997.

[4] Bazzoli et al. Stat Med, 2009. [5] Bazzoli et al. Comput Methods Programs Biomed, 2010. [6] www.pfim.biostat.fr.

[7] Han and Chaloner. Determination & Stochastic Models of AIDS Epidemics & HIV Infections with Intervention, 2005 [8] Guedj et al. Bull Math Biol, 2007.

[9] Plan et al. PAGE, 2010 [10] Golub and Welsch. *Mathematical Computing*, 1969. [11] Press. Numerical Recipes in C, 1992.

[12] Kuhn and Lavielle. *Comput Stat Data Anal* 2005. [13] www.monolix.org