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BACKGROUND

• Dose-response studies: Importance of identifying the right dose

– Two main analysis approaches: multiple comparisons between doses or modelling [1]

– Modelling: more flexible, increasingly performed in drug development

– Specific case: several doses evaluated for each patient

⇒ Modelling through nonlinear mixed effects models (NLMEM)

• Importance of choice of design

– Trial with one dose/patient: methods to choose robust efficient design for estimating the minimum

effective dose already proposed [2]

– Trial with several doses/patient: how to choose appropriate population design ?

(the number of patients ? the number of doses ? which doses ?)

⇒ Increasingly important step: to choose appropriate designs for NLMEM

• Design evaluation and optimisation in NLMEM

– Simulations : time consuming, limited number of designs evaluated

– Population Fisher information matrix (MF )

* MF for NLMEM, using first order approximation of the model [3,4]:

implementation in R function PFIM [5,6] and in other software

* Adequacy of the linearisation: influenced by model nonlinearity [7]

⇒ Possible alternative approach: Gaussian quadrature [8]

MOTIVATING EXAMPLE

• A dose-response study [9]

– Sigmoid Emax model E = E0+
Emax ×doseγ

D50γ+doseγ

– Parameters E0 = 5, Emax = 30, D50 = 500 mg, γ = 1 or 3

– Dose-response curves with γ = 1 (left) and γ = 3 (right)
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OBJECTIVES

• To propose a method to evaluate M F in NLMEM without linearisation, based on Gaussian quadrature

• To evaluate this new method by simulation and compare it to first order approximation for this dose-

response sigmoid Emax model with various nonlinearity levels (γ= 1 or 3)

• To illustrate the use of this new method for studying the impact of several designs on D50 precision

COMPUTING MF IN NONLINEAR MIXED EFFECTS MODELS

• Notation
– Design

* N patients i

* ni doses in patient i

* ξi = (di 1, ...,di j , ...,di ni
) = elementary design in patient i

* Ξ= {ξ1, ...,ξi , ...,ξN } = population design

– Nonlinear mixed effects model

* Individual model yi = f (φi ,ξi )+ǫi

· Random error ǫi ∼N (0,Σi ); Σi = diag(σinter+σslope f (φi ,ξi ))2

· Individual parameter φi

* Random effect model φi = g (µ,bi ) =µ exp(bi ); bi ∼N (0,Ω), diagonal Ω

* Population parameter Ψ (size P)

· Fixed effects µ

· Variance terms λ = {variances ω2 of random effects in Ω, σinter and/or σslope }

• Fisher information matrix

– Likelihood expressed as an integral L(yi ;Ψ) =

∫

p(yi |bi ;Ψ)p(bi ;Ψ)dbi

– MF for elementary design ξi MF (Ψ;ξi ) = E

(

−∂2 logL(yi ;Ψ)

∂Ψ∂Ψ′

)

– MF for population design Ξ MF (Ψ;Ξ) =
N
∑

i=1

MF (Ψ;ξi )

– No analytical form for the likelihood L in nonlinear models

• Computing MF by linearisation (LIN)

– Likelihood approximation using first order expansion of f about random effects taken at 0 [3,4]

yi ≈ f (g (µ,0),ξi )+

(

∂ f ′(g (µ,bi ),ξi )

∂bi

)

bi=0

bi +ǫi

– Analytical expression for L

– Mathematical derivations of L ⇒ Expression of MF (Ψ,ξi ): block diagonal matrix

MF (Ψ;ξi ) =

(

MF (µ;ξi ) 0

0 MF (λ;ξi )

)

– Implemented in PFIM [6] and several other software

• Computing MF by Gaussian quadrature (GQ)

– Defining ηi =Ω
−1/2bi , then ηi ∼N (0, I ), L(yi ;Ψ) =

∫

p(yi |ηi ;Ψ)p(ηi ;Ψ)dηi

– Integration by quadrature rule, using Gauss-Hermite nodes ηi k and weights wk [10,11]

L(yi ;Ψ) ≈
K
∑

k=1

wk p(yi |ηi k;Ψ)

– Mathematical derivations of L ⇒ Expression of MF (Ψ,ξi ) without linearisation

MF (Ψ;ξi ) =

(

MF (µ;ξi ) MF (µ,λ;ξi )

MF (λ,µ;ξi ) MF (λ;ξi )

)

– Implementation in a working version of PFIM

(using function gauss.quad of R package statmod, 20 nodes)

EVALUATION BY SIMULATION

• Simulation example

– Dose-response trial with

several doses/patient

* Sigmoid Emax model

* ω= 0.3 for all parameters

* σinter = 2, σslope = 0

– Design

* N = 100

* n = 4 doses/patient

(0, 100, 300, 1000)

– Two simulation scenarii

1000 trials of 100 patients

* γ= 1 or γ= 3

• Evaluation method
Comparison of relative standard errors (RSE) between

different approaches for each scenario

– Predicted RSE from M F by linearisation in PFIM: RSE_LIN

– Predicted RSE from M F by Gaussian quadrature: RSE_GQ

– Empirical RSE from repeated simulations: RSE_EMP

On 1000 datasets of 100 subjects:

* Estimation of parameters by SAEM algorithm [12] in

MONOLIX 3.2 [13]

* Empirical standard error = sample estimate of the stan-

dard deviation from parameter estimates ⇒ RSE_EMP

⇒ RSE_LIN vs. RSE_GQ vs. RSE_EMP

RESULTS

• γ= 1
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– γ= 1: adequate prediction of RSE by LIN and GQ, close to EMP

• γ= 3
Fixed effects Variance of random effects σinter
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– γ= 3: over-prediction of RSE of fixed effects by LIN; adequate prediction by GQ, close to EMP

large empirical RSE for ω2
γ > asymptotic predictions

ILLUSTRATION FOR DOSE-RESPONSE TRIAL

• Objective
To illustrate the use of the new method based on

Gaussian quadrature for studying the impact of

several designs on D50 precision

• Comparison between 4 designs
for γ= 1 and γ= 3
- Predicted RSE (D50) (%)

- Criterion = det(MF )1/P

}

from MF computed by Gaussian quadrature

• Studied designs
N n nt ot Doses

100 7 700 (0, 100, 300, 500, 700, 900, 1000)

100 4 400 (0, 100, 300, 1000)

1/6 (0, 100)

100 2 200 1/6 (0, 300)

1/6 (0, 1000)

1/6 (100, 300)

200 2 400 1/6 (100, 1000)

1/6 (300, 1000)

• Results
γ= 1 γ= 3
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– The richer is the design, the larger is the criterion, the more precise is the estimation of D50

– The design (100,4) is better than the design (200,2); RSE(D50) when γ= 3 < RSE(D50) when γ= 1

DISCUSSION

• Summary
– Approaches to compute MF for designing in NLMEM

* Linearisation approach:

- moderate nonlinearity level: ok

- high nonlinearity level: problem

* New alternative approach based on Gaussian quadrature: avoiding linearisation,

giving adequate prediction of SE

– Dose-response trials with several doses/patient analysed through NLMEM

can be designed using Gaussian quadrature

* Requiring the knowledge of the model and its parameters

* Complementary approaches: robust approach, sensitivity analysis, adaptive design

• Prospects
– Further evaluation of the new approach with more complex models + link to optimisation

– Implementation in a future version of PFIM ⇒ useful tool to design dose-response trials
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