EVALUATION OF FISHER INFORMATION MATRIX USING GAUSSIAN QUADRATURE

IN NONLINEAR MIXED EFFECTS MODELS
| Application to dose-response trials
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BACKGROUND EVALUATION BY SIMULATION

» Dose-response studies: Importance of identifying the right dose e Evaluation method

Comparison of relative standard errors (RSE) between
different approaches for each scenario

— Predicted RSE from M by linearisation in PFIM: RSE_LIN
— Predicted RSE from M by Gaussian quadrature: RSE_GQ

— Empirical RSE from repeated simulations: RSE_EMP
On 1000 datasets of 100 subjects:

*Estimation of parameters by SAEM algorithm [12] in
MONOLIX 3.2 [13]

* Empirical standard error = sample estimate of the stan-
dard deviation from parameter estimates = RSE_EMP

= RSE_LIN vs. RSE_GQ vs. RSE_EMP
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e Simulation example

— Dose-response trial with
several doses/patient

—Two main analysis approaches: multiple comparisons between doses or modelling [1]
— Modelling: more flexible, increasingly performed in drug development

* Sigmoid Emax model

*w = 0.3 for all parameters
* Tinter = 2, Oslope = 0

— Specific case: several doses evaluated for each patient
= Modelling through nonlinear mixed effects models (NLMEM)

« Importance of choice of design ]
— Design

*N =100
* n =4 doses/patient
(0, 100, 300, 1000)
— Two simulation scenarii
1000 trials of 100 patients
*y=1lory=3

RESULTS

—Trial with one dose/patient: methods to choose robust efficient design for estimating the minimum
effective dose already proposed [2]

—Trial with several doses/patient: how to choose appropriate population design ?
(the number of patients ? the number of doses ? which doses ?)

= Increasingly important step: to choose appropriate designs for NLMEM
* Design evaluation and optimisation in NLMEM

— Simulations : time consuming, limited number of designs evaluated

— Population Fisher information matrix (MF)

* Mp for NLMEM, using first order approximation of the model [3,4]:
implementation in R function PFIM [5,6] and in other software
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* Adequacy of the linearisation: influenced by model nonlinearity [7] = LN = LN
B GQ B GQ
B EMP B EMP

= Possible alternative approach: Gaussian quadrature [8]

MOTIVATING EXAMPLE

* A dose-response study [9]

— Sigmoid Emax model

E=EQ+

Emax x doseY

D50Y +doseY

— Parameters £0 =5, Emax =30, D50 =500mg, y=1o0r3
— Dose-response curves with y =1 (left) and y = 3 (right)
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OBJECTIVES ;s : -
 To propose a method to evaluate M in NLMEM without linearisation, based on Gaussian quadrature
* To evaluate this new method by simulation and compare it to first order approximation for this dose- o o
response sigmoid Emax model with various nonlinearity levels (y = 1 or 3) -
* To illustrate the use of this new method for studying the impact of several designs on D50 precision o - o -
Emax D50 Y EO Emax D50 Y EO Ointer

COMPUTING M g IN NONLINEAR MIXED EFFECTS MODELS

—7v = 3: over-prediction of RSE of fixed etfects by LIN; adequate prediction by GQ, close to EMP
large empirical RSE for w? > asymptotic predictions

* Notation
— Design
* N patients i

* n; doses in patient i 2 =1{&,..., ¢4, ..., N} = population design

— Nonlinear mixed effects model To illustrate the use of the new method based on Il\I)O ? ?(I(())t I())OT(!)?) 300, 500, 700, 900, 1000)
e B Gaussian quadrature for studying the impact of o T T TR T
Individual model y; = f(¢;, <) +€; several designs on D50 precision 100 4 400 | (0, 100, 300, 1000)
- Random error €; ~ A (0,%,); Z; = diag(Tinter + O stope f (P1, €1))? . Comparison between 4 designs 1/6 (0, 100)
. Individual parameter ¢; fory =1andy =3 1002 200 |1/6 (0, 300)
* Random effect model ¢; = g(u, b;) = uexp(b;); b; ~ A (0,Q), diagonal Q - Predicted RSE (D50) (%) i; g ((1)63)0(3)82)
* Populatlon parameter YV (size P) _ Criterion = det(Mjy)"/? 200! 2 | 200 | 1/6 IIOO’ 1002))
- Fixed effects from Mr computed by Gaussian quadrature 1/6 (30(): 1000)

. Variance terms A = {variances w* of random effects in Q, g, and/or O slope |

*¢i=(dy, ..., dij,..., dip,) = elementary design in patient i
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ILLUSTRATION FOR DOSE-RESPONSE TRIAL

* Objective

e Results

 Studied designs

 Fisher information matrix RSE(D50) (%) y=1 Criterion RSE(D50) (%) Y =3 Criterion
— Likelihood expressed as an integral L(y; ¥) = f p(yilby; V) p(b;; P)db; T - & T - g
— M for elementary design ¢; Mgp(¥;&) =E —0"logL(y; V) N B N h
oVov’ o ) o
N - 3 & - 3
— M for population design = Mp(V; =) = Z WEACHD
i=1 ® - < %] - ®
— No analytical form for the likelihood L in nonlinear models ] ]
« Computing My by linearisation (LIN) ) )
— Likelihood approximation using first order expansion of f about random effects taken at 0 [3,4] 51 . . e 51 | | e
, (100,7) (100,4) (100,2) (200,2) (100,7) (100,4) (100,2) (200,2)
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— Mathematical derivations of L = Expression of Mr(¥,¢;): block diagonal matrix
MEg(p561) 0 )

0b;

—The richer is the design, the larger is the criterion, the more precise is the estimation of D50
—The design (100,4) is better than the design (200,2); RSE(D50) when y = 3 < RSE(D50) when y =1

DISCUSSION

— Analytical expression for L

Mp(¥;¢;) = ( 0 MEg(A;¢;)

e Summary

— Implemented in PFIM [6] and several other software — Approaches to compute M for designing in NLMEM

« Computing My by Gaussian quadrature (GQ)
- Defining n; = Q7"?b;, thenn; ~ A (0,1), L(y;¥P) = f pyiln; Ypn;Wdn;

* Linearisation approach:
- moderate nonlinearity level: ok
- high nonlinearity level: problem
* New alternative approach based on Gaussian quadrature: avoiding linearisation,

— Integration by quadrature rule, using Gauss-Hermite nodes 1;; and weights wy [10,11] giving adequate prediction of SE

K
Ly;¥) = ) wep(yilni'P)
k=1

— Dose-response trials with several doses/patient analysed through NLMEM

can be designed using Gaussian quadrature
— Mathematical derivations of L = Expression of Mg(¥, ;) without linearisation

Mp(w;¢:)  Mp(u, A;¢;)
MpA, w;¢:)  Mgp(A;¢;)

— Implementation in a working version of PFIM
(using function gauss.quad of R package statmod, 20 nodes)

* Requiring the knowledge of the model and its parameters
* Complementary approaches: robust approach, sensitivity analysis, adaptive design

Mp(¥;¢i) =
' ( e Prospects

— Further evaluation of the new approach with more complex models + link to optimisation
— Implementation in a future version of PFIM = useful tool to design dose-response trials
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