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1 Motivation
* Pharmacokinetic and toxicokinetic studies,
* Restrictiveness of conventional optimum designs,
* Lack of simple techniques of calculating sampling intervals having high efficiency and good in-

terpretation.

2 Class of considered models
Observation equation (N - number of individuals, nk - number of observations for individual k)

yki = η(tki ; θ
k
i ) + εki , i = 1, . . . , nk, k = 1, . . . , N (1)

where yki is an observation at time tki ∈ T = [0, tmax], εki ∼ f, yki |θ
k
i ∼ g(yki |θ

k
i ), where f and g

are known densities and η is known possibly nonlinear function. Vectors θki ∈ Θ are assumed to
be realizations of the random vector θ with probability density h(θ;ψ). The function h is entirely
determined by the population parameter vector ψ = (E(θ), var(θ))T = (ψ1, . . . , ψp̃)

T.
Efficient estimation of this vector of constant parameters ψi is of our primary interest.

3 Experimental design (N patients in G groups)
(Patan and Bogacka, 2006)

Individual level (within group j every patient follows the same design)
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where wji denotes the proportion of observations to be taken at time instant tji .

Population level (for all G groups)

ζ =

{
(ξ1, n1) . . . (ξG, nG)
α1 . . . αG

}
;

G∑
j=1

αj = 1; αj ∈ (0, 1], (3)

where αj denotes the proportion of the population of N subjects in group j.

4 The optimum population design problem
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}
Comments
• Such a reformulation simplifies the problem of finding the two level hierarchical optimal popula-

tion design to that of finding the equivalent one level design.
• It significantly reduce the dimensionality of the optimization problem.

• The information about groups is included in q
j
i and so in qk. This information is later recovered

after an optimum design ω has been found.

5 EXAMPLE: Pharmacokinetic study
As and example we use the one-compartment model with first-order drug absorption (Jonsson et al.,
1996):

y =
Dka

V (ke − ke)

(
e−ket − e−kat

)
+ ε, (4)

where ka and ke are the first-order absorption and elimination rates, respectively, V is the apparent
volume of distribution, D is a known dose and ε is an additive zero-mean uncorrelated Gaussian
measurement noise with a constant variance. The regression parameters θ = (V, ka, ke)

T are inde-
pendent and normally distributed. The prior values of the population parameters are:

ψ0 =
(
E(θ), var(θ)

)T
= (100, 2.08, 0.1155, 0.3, 0.3, 0.03)T and var(ε) = 0.15.

We are looking for a D-optimum population design to estimate the population parameters as pre-
cisely as possible. We assume that the concentration of the drug can be measured within the design
space T = [0.25, 12] scaled in hours after administration and the total number of measurements is
assumed to be C0 = 900.
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Fig.1. Drug concentration model Fig.2. Variance of the response prediction d(t, ω?, ψ0)

The variance function d(t, ω?, ψ0) reflects the behaviour of the model function: it has sharp peaks
when the concentration changes fast and a flat peak at the area of slow drug elimination.

The global D-optimum design:

ω? =

{
0.45 1.86 9.90

0.3333 0.3334 0.3333

}

Examples of population D-optimum designs generated from ω?:
1. Identical design (one group design), G = 1, n1 = 9,

ζ =


({

0.45 1.86 9.90
0.3333 0.3334 0.3333

}
, 9

)
1

 ; N? = 100.

For each patient we have to conduct exactly three measurements at each time instant.
2. One-point population design, G = 3, n1 = n2 = n3 = 10

ζ? =

{( {
0.45
1

}
, 10

) ( {
1.86
1

}
, 10

) ( {
9.90
1

}
, 10

)
0.3333 0.3334 0.3333

}
; N? = 90

Each group consist of 30 patients, each patient in a group should have 10 replications at the same
time point.

3. Arbitrarily structured design, G = 3, n1 = n2 = n3 = 10

ζ? =

{( {
0.45 9.90

0.5733 0.4267

}
, 10

) ( {
0.45 1.86 9.90

0.2603 0.5248 0.2149

}
, 10

) ( {
1.86 9.90

0.6184 0.3816

}
, 10

)
0.4008 0.3979 0.2013

}
; N? = 90.

After rounding of the weights there are 36 patients in groups 1 and 2 and 18 patients in group
3. Patients in group 1 have two sampling times replicated 6 and 4 times respectively, in group 2
three sampling times replicated 3, 5 and 2 times, and in group 3 two sampling times replicated 6
and 4 times, respectively.

6 Efficient Sampling Windows
We define an efficient sampling window population design as a design ζW having the D-optimum indi-
vidual design weights wji and numbers of observations nji as well as the D-optimum group propor-
tions αj.

The time instants of the window design ζW belong to a Cartesian product of the sampling intervals
obtained for the global design ω?.

Algorithm
Step. 1. Calculate a locally D-optimum global population design ω?.
Step. 2. Choose the minimum efficiency of window design (or minimal length of shortest window)

and a small λ ∈ (0, 1).
Step. 3. Calculate time windows solving the equation d(t, ω?, ψ0) = λ.
Step. 4. If minimum efficiency (minimum windows length) is assured then STOP, else increase λ

and repeat Step. 3.
Efficient windows based on the Equivalence Theorem condition has been considered by Bogacka
et al. (2006) for a fixed model.

PK EXAMPLE continued

0 2 4 6 8 10 12
3.5

4

4.5

5

5.5

6

6.5

time

va
ria

nc
e

 eff>=0.7

 eff>=0.8

 eff>=0.9
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 win. length>=0.5;   eff>=0.46286

 win. length>=0.4;   eff>=0.64986

 win. length>=0.3;   eff>=0.80023

Fig.1. Time windows with guaranteed efficiency Fig.2. Time windows with guaranteed minimal length

Min. efficiency Windows λ

0.9 [0.3545, 0.5635], [1.4755, 2.3505], [8.0275, 11.9915] 5.61
0.8 [0.3215, 0.6235], [1.3325, 2.6085], [7.2965, 12.0000] 5.25
0.7 [0.3015, 0.6705], [1.2395, 2.8055], [6.8225, 12.0000] 4.97

Min. length Windows λp
0.5 [0.2725, 0.7735], [1.0765, 3.1805], [6.0625, 12.0000] 4.49
0.4 [0.2925, 0.6945], [1.1975, 2.8995], [6.6145, 12.0000] 4.84
0.3 [0.3215, 0.6235], [1.3325, 2.6085], [7.2965, 12.0000] 5.25

Due to the nature of the variance function the sampling windows are narrower when it is important
to take measurements close to the optimum times and they are wider when it is less important.

Optimal maximin sampling windows:
(a) Maximized minimal window length subject to efficiency ≥ 0.9:

Min. length Windows Efficiency
0.2637 [0.3318, 0.5955], [1.7977, 2.0614], [9.5657, 10.5000] 0.9

(b) Maximized minimal efficiency subject to window length ≥ 0.4:

Min. efficiency Windows Win. length
0.8830 [0.2871, 0.6871], [1.7792, 2.1792], [9.1248, 10.6065] 0.4

7 Concluding remarks
* The variance of prediction based technique for generating efficient sampling windows for popu-

lation designs is simple, assures minimum efficiency (or minimum window length), indicates the
importance of accurate timing of the sampling;

* Such windows can be further improved by the maximin method.

References
Bogacka, B., P. Johnson, B. Jones, and O. Volkov (2006). D-effcient window experimental designs.

Accepted to JSPI.
Jonsson, E. N., J. R. Wade, and M. O. Karlsson (1996). Comparison of some practical sampling

strategies for population pharmacokinetic studies. Journal of Pharmacokinetics and Pharmacodynam-
ics 24(2), 245–263.

Patan, M. and B. Bogacka (2006). Optimum experimental design for mixed effects models. In prepa-
ration.


