ESTIMATION OF MIXED HIDDEN MARKOV MODELS WITH SAEM APPLICATION TO DAILY SEIZURES DATA

<u>Maud Delattre</u> (1), Radojka Savic (2), Raymond Miller (3), Mats O. Karlsson (4), Marc Lavielle (5)

(1) University of Paris Sud, (2) INSERM U738, (3) Pfizer Global R & D, (4) Uppsala University, (5) INRIA Saclay Île-de-France

Lewis Sheiner Student Session - PAGE 2010 Berlin

- 4 回 2 4 U 2 4 U

э.

The data

2 Model development

- Screening model
- Placebo/drug model
- Methodology
- Results

The data

2 Model development

- Screening model
- Placebo/drug model
- Methodology
- Results

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

The data

Clinical design:

- double-blind, placebo-controlled, parallel-group and multicenter study
- 788 epileptic patients
- 12 weeks screening phase
 - \rightarrow standard antiepileptic therapy
 - 12 weeks active treatment phase
 - \rightarrow standard antiepileptic therapy + placebo/pregabalin (0.6, 0.9, 1.2, 1.8g TID)

- 4 同 6 4 日 6 4 日 6

3

The data:

- the 788 individual sequences of daily seizure counts
 - \rightarrow 134 196 daily seizures counts

The data

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

The data

We want to develop a placebo/drug model for this data.

< ∃⇒

æ

・ロト ・回ト ・ヨト ・ヨト

Ξ.

2 Model development

- Screening model
- Placebo/drug model
- Methodology
- Results

Screening model

Screening model

• The existence of two (hidden) disease stages could be assumed.

(ロ) 〈母 〉 〈 ヨ 〉 〈 ヨ 〉 「 ヨ 」 のへで

Screening model

- The number of seizures at day $j(y_{ij})$ is a random variable.
- The distribution of y_{ij} depends on the hidden state z_{ij}

< 3 >

Screening model

• The data show that epileptic patients are more likely to stay in the same state than to switch to the other state.

コート (日) (日) (日) (日) (日) (日)

Screening model

Consider individual i

- y_{ij}: number of seizures at day j
- z_{ij}: hidden state at day j

• (z_{ij}) is a hidden Markov chain with transition matrix

$$P_i = \begin{pmatrix} p_{11}^{(i)} & p_{12}^{(i)} \\ p_{21}^{(i)} & p_{22}^{(i)} \end{pmatrix}$$

<ロ> <同> <同> < 回> < 回>

э

•
$$y_{ij}|z_{ij} = 1 \backsim \mathcal{P}(\lambda_1^{(i)})$$
 and $y_{ij}|z_{ij} = 2 \backsim \mathcal{P}(\lambda_2^{(i)})$

Screening model

In individual hidden Markov models

The transition matrix of Z_i is defined by $p_{11}^{(i)}$ and $p_{21}^{(i)}$. Poisson distributions are chosen for the observations in each state $(\lambda_1^{(i)}, \lambda_2^{(i)})$.

Ø population approach

$$\begin{aligned} \operatorname{ogit}(\boldsymbol{\rho}_{11}^{(i)}) &= \beta_1 + \eta_{1i} \\ \operatorname{ogit}(\boldsymbol{\rho}_{21}^{(i)}) &= \beta_2 + \eta_{2i} \\ \operatorname{log}(\lambda_1^{(i)}) &= \operatorname{log}(\lambda_1) + \eta_{3i} \\ \operatorname{log}(\alpha^{(i)}) &= \operatorname{log}(\alpha) + \eta_{4i} \\ \lambda_2^{(i)} &= \lambda_1^{(i)} + \alpha^{(i)} \end{aligned}$$

$$\eta_{i} = (\eta_{1i}, \eta_{2i}, \eta_{3i}, \eta_{4i}) \underset{i.i.d.}{\sim} \mathcal{N}(0, \Omega)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─

③ Here, the population parameters θ are β_1 , β_2 , λ_1 , α and the elements of Ω .

Placebo/drug model

- We want to develop two mixed hidden Markov models simultaneously (screening phase vs treatment phase).
- In the treatment model, the treatment dose could influence both the mean number of seizures in each state and the transition structure of the hidden Markov chain.

Placebo/drug model (1)

Screening phase

Treatment phase

$$\begin{split} &\log(p_{11i}^{S}) &= & \beta_{1}^{S} + \eta_{1i} \\ &\log(p_{21i}^{S}) &= & \beta_{2}^{S} + \eta_{2i} \\ &\log(\lambda_{1i}^{S}) &= & \lambda_{1}^{S} + \eta_{3i} \\ &\log(\alpha_{i}^{S}) &= & \alpha^{S} + \eta_{4i} \\ &\lambda_{2i}^{S} &= & \lambda_{1i}^{S} + \alpha_{i}^{S} \end{split}$$

$$\begin{split} \log \mathrm{i}(\boldsymbol{p}_{11i}^{T}) &= \beta_{1i}^{S} + \delta_{1i} + \gamma_{1} D_{i} \\ \log \mathrm{i}(\boldsymbol{p}_{21i}^{T}) &= \beta_{2i}^{S} + \delta_{2i} + \gamma_{2} D_{i} \\ \log(\lambda_{1i}^{T}) &= \log(\lambda_{1i}^{S}) + \delta_{3i} + \gamma_{3} D_{i} \\ \log(\alpha_{i}^{T}) &= \log(\alpha_{i}^{S}) + \delta_{4i} + \gamma_{4} D_{i} \\ \lambda_{2i}^{T} &= \lambda_{1i}^{T} + \alpha_{i}^{T} \end{split}$$

$$\delta_{1i} = \delta_1 + \eta_{5i}$$

$$\delta_{2i} = \delta_2 + \eta_{6i}$$

$$\delta_{3i} = \delta_3 + \eta_{7i}$$

$$\delta_{4i} = \delta_4 + \eta_{8i}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Placebo/drug model (2)

Screening phase

Treatment phase

- $$\begin{split} \operatorname{logit}(p_{11i}^{S}) &= \beta_{1}^{S} + \eta_{1i} \\ \operatorname{logit}(p_{21i}^{S}) &= \beta_{2}^{S} + \eta_{2i} \\ \operatorname{log}(\lambda_{1i}^{S}) &= \lambda_{1}^{S} + \eta_{3i} \\ \operatorname{log}(\alpha_{i}^{S}) &= \alpha^{S} + \eta_{4i} \\ \lambda_{2i}^{S} &= \lambda_{1i}^{S} + \alpha_{i}^{S} \end{split}$$
- $$\begin{split} \log(\boldsymbol{\rho}_{11i}^{T}) &= \boldsymbol{\beta}_{1i}^{S} + \delta_{1i} + \gamma_{1} D_{i} \\ \log(\boldsymbol{\rho}_{21i}^{T}) &= \boldsymbol{\beta}_{2i}^{S} + \delta_{2i} + \gamma_{2} D_{i} \\ \log(\lambda_{1i}^{T}) &= \log(\lambda_{1i}^{S}) + (\delta_{3i} + \gamma_{3} D_{i})(1 e^{-K_{3}t}) \\ \log(\alpha_{i}^{T}) &= \log(\alpha_{i}^{S}) + (\delta_{4i} + \gamma_{4} D_{i})(1 e^{-K_{4}t}) \\ \lambda_{2i}^{T} &= \lambda_{1i}^{T} + \alpha_{i}^{T} \end{split}$$

(ロ) (同) (目) (日) (日) (0) (0)

$$\begin{aligned} \delta_{1i} &= \delta_1 + \eta_{5i} \\ \delta_{2i} &= \delta_2 + \eta_{6i} \\ \delta_{3i} &= \delta_3 + \eta_{7i} \\ \delta_{4i} &= \delta_4 + \eta_{8i} \end{aligned}$$

A complete inference methodology

1) Estimation of the population parameters (M.L.E.)

$$\hat{\theta} = \operatorname*{argmax}_{\theta} p(Y; \theta)$$

\rightarrow SAEM algorithm

 \rightarrow The Baum Welch algorithm is used to compute

$$p(Y_i, \Psi_i; \theta) = \sum_{Z_i} p(Y_i, Z_i, \Psi_i; \theta)$$

3

at each iteration of SAEM.

A complete inference methodology

2) Estimation of the individual parameters (M.A.P.)

$$\hat{\Psi}_{i} = \operatorname*{argmax}_{\Psi_{i}} p\left(\Psi_{i} | Y_{i}; \hat{\theta}\right)$$

3) Estimation of the sequences of hidden states (MAP)

$$\hat{Z}_i = \operatorname*{argmax}_{Z_i} p\left(Z_i | Y_i, \hat{\Psi}_i; \hat{\theta}\right)$$

 \rightarrow Viterbi algorithm

Our methodology has been implemented in MONOLIX 3.1.

Convergence of SAEM

2.62 50 100 150 200 250 300

SAEM converges in few iterations (25' for the complete data).

Population parameters estimates

Fixed Effect					Variance Term (ω^2)		
parameter	estimate	s.e.	r.s.e. (%)	p-value	estimate	s.e.	r.s.e. (%)
β_1^S	2.31	0.057	2		0.814	0.09	11
$\beta_2^{\overline{S}}$	-0.435	0.074	17		2.23	0.18	8
$\log(\overline{\lambda}_1^S)$	-1.87	0.056	3		1.85	0.12	6
$\log(\alpha^{\overline{S}})$	-0.09	0.055	61		1.64	0.12	7
δ_1	5.19	0.67	13		2.63	1.5	49
γ_1	-0.00266	0.00065	24	4.10 ⁻⁵	0	-	-
δ_2	-0.478	0.21	43		0.246	0.14	58
γ_2	-0.00972	0.00046	5	0	0	-	-
δ_3	-0.69	0.17	25		1.83	0.25	14
γ_3	0.000769	0.00016	20	10 ⁻⁶	0	-	-
δ_4	-0.307	0.13	42		0.129	0.076	59
γ_4	-0.00971	0.00024	2	0	0	-	-

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

The individual parameters and the sequences of hidden states have then been estimated.

The data Conclusion

The data

2 Model development

- Screening model
- Placebo/drug model
- Methodology
- Results

Conclusion

(A) Application of MHMM to seizure count data

 Mixed hidden Markov models are easy to interpret and provide a possible description of the seizure dynamics.

・ロン ・四 と ・ ヨ と ・ ヨ と …

≡ nar

• Our models can also handle a dose effect.

Conclusion

(B) Our new methodology

- \rightarrow Monte Carlo studies showed that our methodology has good practical properties:
 - The population parameters are accurately estimated with SAEM (small bias and RMSE).
 - The estimated s.e. give a good evaluation of the estimates' uncertainty.
 - SAEM is fast.
- \rightarrow Our algorithms are implemented in the Monolix software.
- \rightarrow Our methodology for discrete state space models can be extended for continuous state space models (ex: SDE, see poster PAGE 2010).

イロン 不同 とくほう イヨン

3

Perspectives

- Dose and time-dependent drug effect.
- Extension to Generalized Poisson distributions.
- Selection of the number of hidden states.

• . . .