

# **Prediction discrepancies (pd) for evaluation of models** with data under limit of quantification

Thi Huyen Tram Nguyen, Emmanuelle Comets and France Mentré UMR 738 INSERM and University Paris Diderot, Paris, France

# Introduction

• Nonlinear mixed effect models (NLMEM) are increasingly used for analysis of longitudinal data in clinical trials or cohorts

• Evaluation is an important part of modeling. Simulation-based approaches have been proposed such as VPC, prediction discrepancies (pd) and normalised prediction distribution errors (npde)<sup>[1-6]</sup>

• Data below the quantification limit (BQL data) are a common challenge for longitudinal data analysis in clinical trials, particularly in HIV clinical trials

- $\geq$  appropriate estimation methods have been proposed to take them into account, and have been implemented in reference software (NONMEM, MONOLIX)
- $\geq$  however, evaluation methods do not take into account BQL data
- Omitting BQL data for the evaluation plots, as often done, could introduce fake indications

# Results

#### Estimated parameters from real data and parameters for simulation study Simulation **Estimation** False False RSE True Estimate model model (%) model "var" "mean" **P1 (cp/mL)** 25000 21900 36 25000 25000 32 250 250 **P2 (cp/mL)** 182 250 0.2 0.2 0.2 $\lambda_1$ (day<sup>-1</sup>) 0.205 6 0.02 12 0.02 0.04 $\lambda_2$ (day<sup>-1</sup>) 0.0195 2.1 2.1 12 2.1 2.07 ω<sub>Ρ1</sub> 1.4 1.4 1.4 18 1.5 $\omega_{P2}$ 0.3 0.3 0.3 0.206 21 $\omega_{\lambda 1}$ 25 0.20 201 0.2

1. Parameter estimates for the real data



del calculated b

#### of model misspecification if the amount of BQL data is large

# **Objectives**

To develop an extension to pd taking into account BQL observations To illustrate the use of this new method on simulated data

# Data and model

- Data from the COPHAR 3 ANRS 134 multicenter clinical trial:
  - $\geq$  34 naïve HIV-infected patients treated once daily with atazanavir, ritonavir and tenofovir/emtricitabine during 24 weeks
  - $\geq$  viral load were measured on the 1st day of treatment and at the 4<sup>th</sup>, 8<sup>th</sup>, 12<sup>th</sup>, 16<sup>th</sup> (20<sup>th</sup>) and 24<sup>th</sup> weeks
  - $\geq$  limits of quantification of HIV assay are 40 or 50 copies/mL
- A bi-exponential model (Equation 1)<sup>[7]</sup> was used to describe HIV viral load decrease during treatment. Parameter estimates for the real data were obtained using the SAEM algorithm in MONOLIX 3.2<sup>[8]</sup>  $f(\theta, t) = \log_{10}(P_1 e^{-\lambda_1 t} + P_2 e^{-\lambda_2 t})$ (Equation 1)

# Methods

- Notations: N subjects i = 1,..., N  $y_{ij} = f(q_i, t_{ij}) + g(q_i, t_{ij}) \varepsilon_{ij}$ : observation for individual *i* at time  $t_{ij}$ : structural nonlinear model; g : model for residual error  $\mathcal{E}_{ii}$ : residual errors  $-\mathcal{E}_{ii} \sim N(0,\sigma^2)$ 
  - $\theta_i$ : vector of the individual parameters for subject *i*

| $\omega_{\lambda 2}$ | 0.301 | 23 | 0.5  | 0.5  | 0.9  | lime                                           |
|----------------------|-------|----|------|------|------|------------------------------------------------|
| $ρ(η_{P1}, η_{P2})$  | 0.856 | 7  | 0.8  | 0.8  | 0.8  | Figure 2. NPD vs time for the COPHAR 3 dynamic |
| Additive <b>o</b>    | 0.15  | 4  | 0.15 | 0.15 | 0.15 | omitting the BQL observati                     |

- Data : 205 observations in 34 patients with 49.8% BQL data
- BQL data are taken into account in model building step using the extended version of SAEM<sup>[8]</sup>
- Parameters are well estimated (Table 1). The scatterplot of npd vs time computed by omitting the BQL data suggests model misspecifications

### **2. Graphic illustration** (*Figure 3*)

- $H_0$ , omitting BQL data: clear departure of the median of npd from 0
- With new approach:
  - > H<sub>0</sub>: allows to select the right model
  - > H<sub>1 mean</sub>: shift of npd away from 0, becoming less clear as % of BQL data increases
  - > H<sub>1 var</sub>: model misspecification not apparent when % of BQL data increases



 $\mu$ : vector of the *p* fixed effect parameters  $\theta_i = \mu \times e^{\eta_i}$  $\eta_i$ : vector of the q random effect parameters  $\eta_i \sim N(0, \Omega)$ :  $\Omega$  defined as a  $q \times q$  - non diagonal matrix

• Prediction discrepancy  $pd_{ii}$  for observation  $y_{ii}$  above limit of quantification (LOQ)

$$pd_{ij} = F_{ij}(y_{ij}) = \int_{ij}^{y_{ij}} p(y|\theta_i) p(\theta_i) d\theta_i dy \approx \frac{1}{K} \sum_{k=1}^{K} 1_{y_{ij}^{sim(k)} < 1}$$

 $F_{ii}$ : cumulative distribution function (cdf) of the predictive distribution of  $y_{ii}$  under tested model obtained by *K* Monte-Carlo simulations

#### • Prediction discrepancy $pd_{ii}$ for observation $y_{ii}$ below LOQ $pd_{ii}$ is randomly sampled from a uniform distribution U[0, Pr( $y_{ii} \leq LOQ$ )]

with 
$$\Pr(y_{ij} \leq LOQ) = F_{ij}(LOQ) \approx \frac{1}{K} \sum_{k=1}^{K} 1_{y_{ij}^{sim(k)} < LOQ}$$

• npd =  $\phi^{-1}(pd)$ ; if the model is correct, npd ~ N(0,1)

npd are correlated if repeated measurements within subjects

• npde are the decorrelated version of npd, computed as described in [3-6]

if the model is correct, npde ~ N(0,1).

• Evaluation graph: scatterplot of npd (npde) vs time with the 10<sup>th</sup>, 50<sup>th</sup> and 90<sup>th</sup> percentiles corresponding to observed data. To facilitate model evaluation, the 95% prediction intervals for these selected percentiles of simulated data are added into graph as colored bands<sup>[6]</sup>

- Tests of npd (npde): Wilcoxon, Fisher and Shapiro Wilks tests are used <sup>[3-6]</sup>
  - > global p-value is obtained using Bonferroni correction

## Simulation study

Figure 3. NPD vs time of 1 simulated dataset under different models at 3 LOQ levels (rich design) H<sub>0</sub>(omit): NPD computed by omitting BQL data for the basic model. H<sub>0</sub>, H<sub>1 mean</sub>, H<sub>1 var</sub>: NPD by new approach counting for BQL data under several models

#### 3. Evaluation by simulation of the npd with BQL • Design with 1 observation/subject

- $\succ$  type I error close to 5% regardless of LOQ (H<sub>0</sub>)
- $\succ$  high power to detect model misspecification for H<sub>1 mean</sub> even for large amounts of BQL data
- $\succ$  high power to detect model misspecification for H<sub>1 var</sub> on the full dataset, but quick decrease of power as the % of BQL data increases

#### • Design with 6 observations/subject, simulation H<sub>0</sub>

Table 2. Type 1 error and power under severa assumptions of the global test for npd evaluated on 1000 datasets simulated with the sparse design

| Accumptions         | LOQ (cp/mL) |       |           |  |  |
|---------------------|-------------|-------|-----------|--|--|
| Assumptions         | 0           | 20    | <b>50</b> |  |  |
| $\mathbf{H}_{0}$    | 0.043       | 0.041 | 0.041     |  |  |
| H <sub>1_mean</sub> | 1.000       | 1.000 | 1.000     |  |  |
| H <sub>1_var</sub>  | 1.000       | 0.494 | 0.336     |  |  |

Table 3. Type 1 error under  $H_0$  of the global test for npd and npde computed by omitting BQL data valuated on 1000 datasets simulated with the rich

 $\mathbf{IOO}(\mathbf{r}_{1}/\mathbf{r}_{2}\mathbf{I})$ 

- Designs: 300 observations at 0, 24, 56, 84, 112, 168 days after initiation of treatment  $\rightarrow$  sparse design: N = 300 subjects, n = 1 observation/subject
  - $\succ$  rich design: N = 50 subjects, n = 6 observations/subject
- Models: to simulate different validation datasets V
  - $\succ$  "true" model (H<sub>0</sub>) inspired by the real data results
  - $\geq$  "false" models with modification in fixed (H<sub>1 mean</sub>) or random effects parameters (H<sub>1 var</sub>)
- LOQ levels: 0, 20 or 50 copies/mL
- Computation of npd using the new approach: K = 1000 MC simulations
- Type I error and power using the global test of npd (or npde): 1000 validation datasets were simulated for each scenario

> in the absence of BQL data, large type I error for npd, corrected with npde which take correlations into account when omitting BQL data, even npde show large type I errors

| Assumption            | LOQ (cp/mL) |       |       |  |
|-----------------------|-------------|-------|-------|--|
| H <sub>0</sub> (omit) | 0           | 20    | 50    |  |
| npd                   | 0.643       |       |       |  |
| npde                  | 0.054       | 0.257 | 0.469 |  |

## **Conclusion and perspectives**

- Omitting BQL data in model evaluation can lead to misleading conclusion in the presence of large amounts of BQL data
- The new method for computing the prediction discrepancies is a promising approach to take into account BQL data in evaluation graphs
- Intra-subject correlations should be taken into consideration when testing, and a decorrelation method is currently under development in case of BQL data

## References

[1] F Mesnil, F Mentré, C Dubruc, JP Thenot, A Mallet (1998). J Pharmacokinet Biopharm, 26: 133-61. [5] K Brendel, E Comets, C Laffont, F Mentré (2010). J Pharmacokinet Pharmacodyn, 37: 49-65. [6] E Comets, K Brendel, F Mentré (2010), Journal de la Société Française de Statistique, 151: 106-128. [2] F Mentré, and S Escolano (2006). J Pharmacokinet Pharmacodyn, 33: 345-67. [3] E Comets, K Brendel, F Mentré (2008). Comput Methods Programs Biomed, 90: 154-66. [7] A Ding, H Wu (1999), Math. Biosci., 160: 63-82 [4] K Brendel et al (2006). Pharm Res, 23:2036–49 [8] A Samson, M Lavielle, F Mentré (2006), Computational Statistics & Data Analysis, 51:1562-1574.