Development and application of a population PK-PD model quantifying trastuzumab induced changes in cardiac function

Optimizing monitoring strategies of trastuzumab induced cardiotoxicity

Coen van Hasselt

Netherlands Cancer Institute / Slotervaart hospital, Amsterdam, Netherlands

PAGE meeting, Athens - June 9, 2011

Trastuzumab treatment

- Trastuzumab is a mAB approved for early and metastasized HER2+ breast cancer.
- Treatment of early breast cancer consists of 1 year of trastuzumab every 1 or 3 weeks.
- Major side effect is cardiotoxicity, quantified as decrease in *left ventricular* ejection fraction (LVEF).
- Mechanism of trastuzumab cardiotoxicity still unclear.

Left ventricular ejection fraction

- The LVEF is a measure of cardiac output.
- Risk of heart failure.

$$LVEF = rac{EDV - ESV}{EDV}$$

LVEF is monitored during treatment.

Dose interruption or termination at occurence of a cardiac event:

Change from baseline LVEF > 0.10 **AND** ABS(LVEF) < 0.50

Cardiac management of cardiotoxicity

The LVEF is monitored throughout trastuzumab treatment, as defined in the Summary of Product Characteristics (SPC) for trastuzumab.

Clear **rationale** for monitoring strategy is missing.

Questions during routine patient care

- 1 Dynamics of the LVEF recovery ?
- 2 Effect of prior anthracycline therapy on LVEF dynamics ?
- 3 Performance of the cardiac monitoring protocols ?
- Implications of changing LVEF monitoring frequency/recovery time ?
- 5 Feasibility of adaptive monitoring ?

Objectives

The objectives of this analysis were to:

- Develop a PK-PD model for the relationship between trastuzumab exposure and associated changes in LVEF, and to identify covariates explaining between-subject variability.
- Develop a simulation framework that can be used to address clinical questions regarding optimal cardiac management of trastuzumab associated cardiotoxicity.

Part I: Development of the PK-PD model

Dataset

- Unselected cohort of patients treated with trastuzumab.
- **Exposure**: Individual dosing histories.
- **Response**: LVEF measurements obtained from routine clinical practice.

Number of patients (early, metastatic)	240 (164/76)	
Observations per subject (median)	6	
Total nr of observations	1651	
Age (median, IQR)	50 (43-59)	
Cumulative dose anthracyclines (median, IQR)	0.43 (0.42-0.60)	

Example LVEF profiles

■ Highly informative but also unbalanced and heterogeneous data → *Population approach*!

Covariates

- Radiotherapy to the chest (left/right)
- Age
- Body mass index
- Adjuvant/metastasized
- Cumulative prior dose of cyclophosphamide
- Cumulative prior dose of anthracyclines

Anthracyclines

- Anthracycline chemotherapeutics: **doxorubicine** and **epirubicine**.
- Patients treated with prior anthracycline therapy are more at risk for trastuzumab associated cardiotoxicity.
- Maximum cumulative anthracycline doses have been defined.
- Relative anthracycline doses were calculated.
- Sum of the cumulative relative anthracycline dose was used as covariate.

Model building

- PK was described using a previously published model for trastuzumab PK¹ and individual dosing histories.
- PD was modelled using an effect compartment model and an Emax model.

¹Bruno R et al. Cancer chemotherapy and pharmacology 2005. 56(4), 361-369.

Parameter estimates

	Population mean (RSE)	BSV (RSE)
Recovery half-life (days)	49.7 (28.2)	79.4 (27.6)
EC50 ("Sensitivity") (mg/ml)	4.82 (19.6)	103 (13.8)
Baseline LVEF(-)	0.636 (0.904)	30.0 (6.5)
	Prop. residual error (CV%)	
Method 1	7.35 (17.1)	
Method 2	9.11 (8.40)	

BSV=Between subject variability(CV%)

- Prior anthracycline dose was a covariate on EC50.
- A maximum prior cumulative anthracycline treatment causes a 45.9% decrease in EC50.

Model evaluation

- Parameters were estimated with adequate precision and was confirmed with a bootstrap analysis.
- Goodness-of-fit and NPDE indicated adequate performance.

Anthracyline effect

Questions during routine patient care

- ✓ Dynamics of the LVEF recovery ?
- Effect of prior anthracycline therapy on LVEF dynamics ?
- **3 Performance** of the cardiac monitoring protocols ?
- Implications of changing LVEF monitoring frequency/recovery time ?
- 5 Feasibility of adaptive monitoring ?

Part II: Development of a simulation framework

Simulation framework

Aims:

- Simulate LVEF profiles and related dosing interruptions and terminations.
- SPC-defined cardiac monitoring protocol.
- Early breast cancer treatment (1 year).

Simulation framework steps:

- **1 Simulate** individual LVEF profiles (n=5000).
- 2 Apply the SPC-defined cardiac monitoring protocol.
- 3 Re-calculate LVEF profiles for patients with dose intervention.
- 4 Repeat step 2 & 3 until end or stop of of treatment.

Typical simulation profile

Time (days)

Outcome measures

- Outcome measures:
 - Efficacy: Dose intensity
 - Diagnostic performance of LVEF assessment protocols

SPC monitoring schedule performance

- Efficacy: prior anthracycline treatment has significant impact on dosing intensity (DI).
 - Anthracycline naive patients: 2.5th percentile of patients has a DI < 89%.
 - Maximum anthracycline pretreatment: 2.5th percentile of patients has a DI < 44%.</p>

Diagnostic performance of the SPC:

- Sensitivity: 78%
- Specificity: 97%
- Substantial impact of residual error on performance of the SPC monitoring schedule.

Questions during routine patient care

- ✓ Dynamics of the LVEF recovery ?
- Effect of prior anthracycline therapy on LVEF dynamics ?
- ✓ **Performance** of the cardiac monitoring protocols ?
- Implications of changing LVEF monitoring frequency/recovery time ?
- 5 Feasibility of adaptive monitoring ?

Questions during routine patient care

- ✓ Dynamics of the LVEF recovery ?
- Effect of prior anthracycline therapy on LVEF dynamics ?
- Performance of the cardiac monitoring protocols ?
- Implications of changing LVEF monitoring frequency/recovery time ?
- ✓ Feasibility of adaptive monitoring ?

Results

Discussion

- Framework can help to optimization of cardiac monitoring protocols, incorporating:
 - prior anthracycline use
 - recovery time
 - monitoring interval
- Future work will focus on development of optimized cardiac monitoring protocol, including prospective clinical validation.

- Netherlands Cancer Institute, Dept. of Clinical Pharmacology, Amsterdam
 - Dr. Annelies Boekhout
 - Prof. Dr. Jan Schellens
- Slotervaart Hospital, Dept. Pharmacy and Pharmacology, Amsterdam
 - Prof. Dr. Jos Beijnen
 - Dr. Alwin Huitema