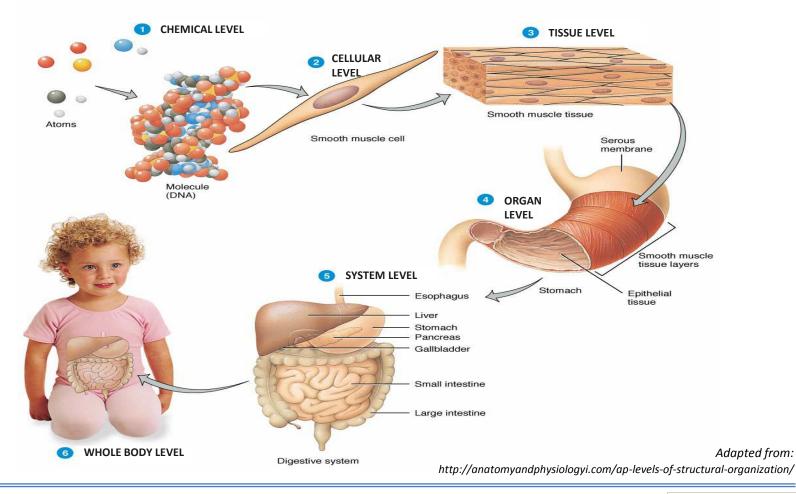
Automated proper lumping for simplification of systems models

Shan Pan Stephen Duffull

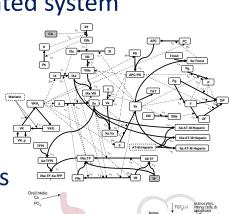
School of Pharmacy, University of Otago, Dunedin, New Zealand

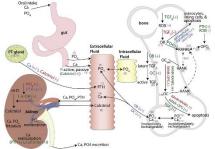
Human body is multi-scale



Systems models

- Systems models are multi-scale
 - Quantify the interaction between drug(s) and integrated system
 - Complex mathematical models
- Examples of systems models
 - Physiologically-based pharmacokinetic (PBPK) models
 - Systems pharmacology models, e.g.,
 - coagulation network: 62 states
 - bone remodelling and calcium homeostasis: 28 states





Wajima et al, Clin Pharmacol Ther 2009; 86(3):290-8 Peterson and Riggs, Bone 2010; 46(1):49-63

Systems models

- Application of systems models
 - PBPK models
 - Predict PK in humans before first-in-human studies
 - Extrapolate findings in special populations (e.g. paediatrics, the obese)
 - Systems pharmacology models
 - Test and identify drug targets in early discovery stage
 - Characterise influence of perturbed conditions on overall efficacy profile
- They are structurally complex and may need to be simplified

Why model simplification?

- These mechanism-driven models can be used to explore datasets
 - Better predictability and extrapolatability than empirical approach
 - Can be used as the basis of model development for estimation and optimisation
- Numeric problems with systems models
 - Large number of parameters
 - Unknown or uncertain parameter values
 - Identifiability issue during estimation (i.e. structural / deterministic)

Model simplification

- An existing technique to reduce a complex system into a simpler structure (i.e. reduced number of states and parameters)
 - Has long been investigated in chemical engineering
 - Model order reduction algorithms to transform system into fewer orders
 - Simpler structure yet similar input-output relationship

Model simplification

- Model simplification techniques
 - Time-scale analysis
 - Separate system into different time-scales (e.g. mAbs PBPK simplification)
 - Replace fast-scale with quasi-steady state (e.g. drug-receptor binding)
 - Fix slow-scale state with constant (e.g. constant in disease progression)
 - Sensitivity analysis
 - Determine and eliminate states insensitive to output of interest
 - Lumping
 - Merge states into reduced pseudo-states

Okino and Mavrovouniotis, Chem Rev 1998; 98(2):391-408 Elmeliegy et al, AAPS J 2014; 16(4):810-42

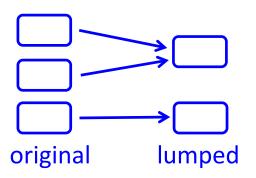
Model simplification

- Model simplification techniques
 - Time-scale analysis
 - Separate system into different time-scales (e.g. mAbs PBPK simplification)
 - Replace fast-scale with quasi-steady state (e.g. drug-receptor binding)
 - Fix slow-scale state with constant (e.g. constant in disease progression)
 - Sensitivity analysis
 - Determine and eliminate states insensitive to output of interest
 - Lumping
 - Merge states into reduced pseudo-states

Okino and Mavrovouniotis, Chem Rev 1998; 98(2):391-408 Elmeliegy et al, AAPS J 2014; 16(4):810-42

Proper lumping

• A special case of lumping that merges some of the states to only one pseudo-state

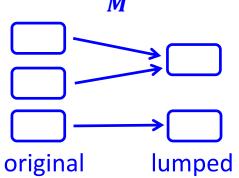


• Reduced states after proper lumping are able to retain the physical meaning as in the original system

Dokoumetzidis and Aarons, IET Syst Biol 2009; 3(1):40-51

Proper lumping

A special case of lumping that merges some of the states to only one pseudo-state



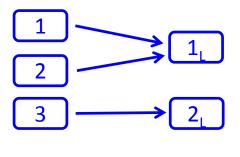
- Reduced states after proper lumping are able to retain the physical meaning as in the original system
- Lumping matrix, *M*, transforms the states between original and reduced systems

Defining Lumping matrix

- The lumping matrix, M, is a $m \times n$ matrix of switches (Os and 1s) where $m \leq n$
- *n* is the number of states in the original system
 - n = 3 for the 3-state example
- *m* is the number of states in the lumped system
 - -m = 2 for lumping the 3-state to be a 2-state system
 - All lumped states are shown as 1s in the same row

Lumping matrix

• Lumping matrix example: $M = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$



original lumped

• For linear systems, proper lumping directly produces parameter values for lumped system with given *M*

Original model:	$\frac{dy}{dt} = K \cdot y$	$oldsymbol{y}$: vector of original states, $oldsymbol{K}$: original parameter matrix
Lumped model:	$\frac{d\hat{y}}{dt} = \hat{K} \cdot \hat{y}$	$\widehat{m{y}}$: vector of lumped states, $\widehat{m{K}}$: lumped parameter matrix

Original model:	$\frac{dy}{dt} = K \cdot y$	y : vector of original states, K : original parameter matrix
Lumped model:	$\frac{d\hat{y}}{dt} = \hat{K} \cdot \hat{y}$	$\widehat{oldsymbol{y}}$: vector of lumped states, $\widehat{oldsymbol{K}}$: lumped parameter matrix
Lumped states:	$\hat{y} = M \cdot y$	M : lumping matrix
	$y = M^+ \cdot \hat{y}$	M ⁺ : Moore–Penrose pseudo-inverse of M

Original model:	$\frac{dy}{dt} = K \cdot y$	$oldsymbol{y}$: vector of original states, $oldsymbol{K}$: original parameter matrix		
Lumped model:	$\frac{d\hat{y}}{dt} = \hat{K} \cdot \hat{y}$	$\widehat{oldsymbol{y}}$: vector of lumped states, $\widehat{oldsymbol{K}}$: lumped parameter matrix		
Lumped states:	$\hat{y} = M \cdot y$	M : lumping matrix		
	$y = M^+ \cdot \hat{y}$	M ⁺ : Moore–Penrose pseudo-inverse of M		
From original to lumped model:				

$$\frac{dy}{dt} = K \cdot y \longrightarrow M \frac{dy}{dt} = M \cdot K \cdot y$$

Original model:	$\frac{dy}{dt} = K \cdot y$	y : vector of original states, K : original parameter matrix	
Lumped model:	$\frac{d\hat{y}}{dt} = \hat{K} \cdot \hat{y}$	$\widehat{oldsymbol{y}}$: vector of lumped states, $\widehat{oldsymbol{K}}$: lumped parameter matrix	
Lumped states:	$\hat{y} = M \cdot y$	M : lumping matrix	
	$y = M^+ \cdot \hat{y}$	M ⁺ : Moore–Penrose pseudo-inverse of M	
From original to lumped model:			

$$\frac{dy}{dt} = K \cdot y \longrightarrow M \frac{dy}{dt} = M \cdot K \cdot y \longrightarrow M \frac{dy}{dt} = M \cdot K \cdot M^{+} \hat{y}$$

tago pharmacometrics

Original model:	$\frac{dy}{dt} = K \cdot y$	y : vector of original states, K : original parameter matrix
Lumped model:	$\frac{d\hat{y}}{dt} = \hat{K} \cdot \hat{y}$	$\widehat{m{y}}$: vector of lumped states, $\widehat{m{K}}$: lumped parameter matrix
Lumped states:	$\hat{y} = M \cdot y$	M : lumping matrix
	$y = M^+ \cdot \hat{y}$	M ⁺ : Moore–Penrose pseudo-inverse of M
From original to lum	ped model:	

$$\frac{dy}{dt} = K \cdot y \longrightarrow M \frac{dy}{dt} = M \cdot K \cdot y \longrightarrow M \frac{dy}{dt} = M \cdot K \cdot M^+ \hat{y} \longrightarrow \frac{d\hat{y}}{dt} = M \cdot K \cdot M^+ \hat{y}$$

Original model:

$$\frac{dy}{dt} = K \cdot y$$
Lumped model:

$$\frac{d\hat{y}}{dt} = \hat{K} \cdot \hat{y}$$
Lumped states:

$$\hat{y} = M \cdot y$$

$$y = M^{+} \cdot \hat{y}$$

y: vector of original states, K: original parameter matrix

 $\widehat{m{y}}$: vector of lumped states, $\widehat{m{K}}$: lumped parameter matrix

M: lumping matrix

M⁺: Moore–Penrose pseudo-inverse of M

From original to lumped model:

$$\frac{dy}{dt} = K \cdot y \longrightarrow M \frac{dy}{dt} = M \cdot K \cdot y \longrightarrow M \frac{dy}{dt} = M \cdot K \cdot M^{+} \hat{y} \longrightarrow \frac{d\hat{y}}{dt} = M \cdot K \cdot M^{+} \hat{y}$$

O otago pharmacometrics

Original model:
$$\frac{dy}{dt} = K \cdot y$$
Lumped model: $\frac{d\hat{y}}{dt} = \hat{K} \cdot \hat{y}$ Lumped states: $\hat{y} = M \cdot y$ $y = M^+ \cdot \hat{y}$

y: vector of original states, K: original parameter matrix

 $\widehat{m{y}}$: vector of lumped states, $\widehat{m{K}}$: lumped parameter matrix

M: lumping matrix

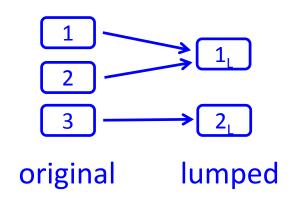
M⁺: Moore–Penrose pseudo-inverse of *M*

From original to lumped model:

$$\frac{dy}{dt} = K \cdot y \longrightarrow M \frac{dy}{dt} = M \cdot K \cdot y \longrightarrow M \frac{dy}{dt} = M \cdot K \cdot M^{+} \hat{y} \longrightarrow \frac{d\hat{y}}{dt} = M \cdot K \cdot M^{+} \hat{y}$$

Lumping matrix

• Lumping matrix example: $M = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

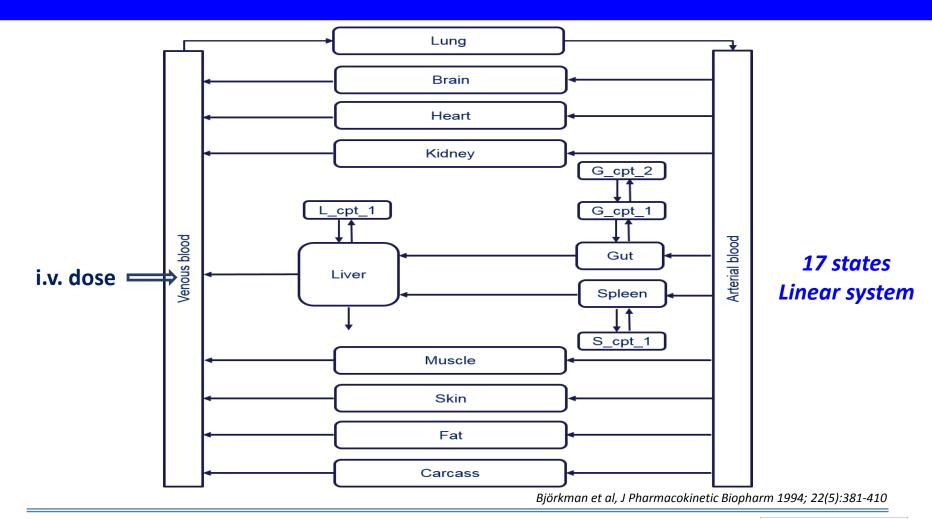


• Automated process is designed to search the *M* that satisfies a predefined criterion

Application example: fentanyl PBPK model

- Fentanyl is a potent synthetic opioid
- Small molecule and highly lipophilic
 - readily distribute into body tissues
- Administration routes: intravenous, transdermal, oral ...
- Intravenous fentanyl is commonly used for anaesthesia during surgery and pain management before or after surgery

Fentanyl PBPK model



- Inputs for simplifying fentanyl PBPK model
 - i.v. infusion of 11 μ g/kg over 5 minutes
 - Parameter matrix
 - Arterial concentration as measurement of interest
- Proper lumping as the simplification technique
 - Arterial state unlumped

Lumping matrix in fentanyl PBPK model

• Original lumping matrix

 $M = I_n$; n = number of states in original model

• Simplification started from fully lumped matrix

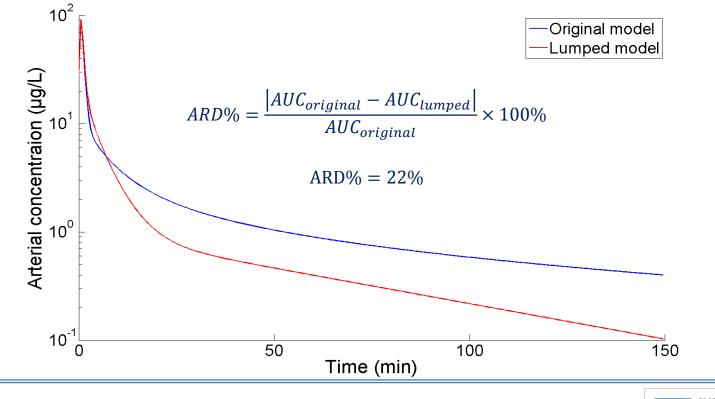
$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

Parameter matrix in fentanyl PBPK model

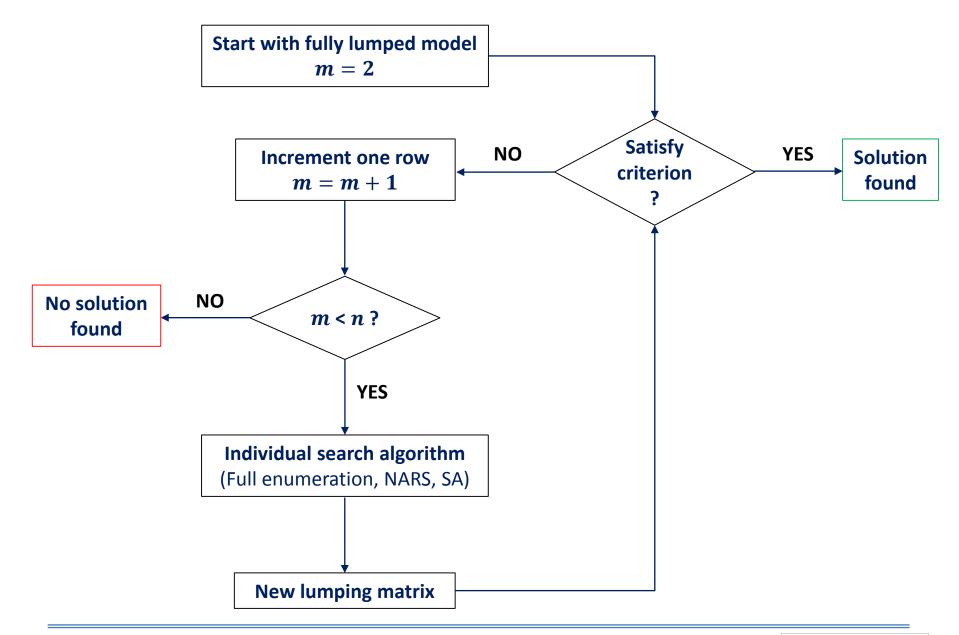
K = [-Qcad/Vven	0 KT	bra*Vbra/Vven KT	hea*Vhea∕Vven	KTkid*Vkid/Vven	KTliv*Vliv/Vven	KTmus*Vmus/Vven	KTski*Vski/Vven	
Qcad/Vart	-Qcad/Vart	0	0	0	0	0	0	
0	Qbra/Vbra	-KTbra	0	0	0	0	0	
0	Qhea/Vhea	0 -	KThea	0	0	0	0	
0	Qkid/Vkid	0	0	-KTkid	0	0	0	
0	0	0	0	0	Loss_liver	0	0	
0	Qmus/Vmus	0	0	0	0	-KTmus	0	
0	Qski/Vski	0	0	0	0	0	-KTski	
0	Qfat/Vfat	0	0	0	0	0	0	
0	Qcar/Vcar	0	0	0	0	0	0	
0	Qsint/Vgut_1	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	Qpas/Vpas_1	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	CL12_hep/Vhep_2	0	0	
KTfat*Vfat/Vven	KTcar*Vcar/Vv	en O	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	S11_to_Liver	0	0	S14_to_Live	er O	S16_to_L	iver
0	0		0	0	0	0	0	
0	0	0	0	0	0	0	0	
-KTfat	0	0	0	0	0	0	0	
0	-KTcar	0	0	0	0	0	0	
0	0	Loss_gut_1	CL21_gut/Vgu	t_1 0	0	0	0	
0	0	CL12_gut/Vgut_2		CL32_gut		0	0	
0	0	0	CL23_gut/Vgu	t_3 -CL32_gut	:/Vgut_3 0	0	0	
0	0	0	0	0	Loss_pa		as/Vpas_1 0	
0	0	0	0	0	CL12_pa	as/Vpas_2 -CL21_	pas/Vpas_2 0	
0	0	0	0	0	0	0	-CL	21_hep/Vhep_2];

Acceptance criterion

• Absolute relative difference (ARD%) in total area under concentration-time curve (AUC)



- Acceptance criterion
 - ARD% <= 0.002% in fentanyl PBPK example</p>
 - Least number of rows in lumped model
- Constrained lumping
 - Output state unlumped during search
- Software
 - MATLAB[®] (version R2013b)



- Individual search algorithm of *M* matrix
 - Full enumeration
 - Non-adaptive random search (NARS)
 - Simulated annealing (SA)

- Full enumeration
 - Exhaustive search all M matrices

- Non-adaptive random search (NARS)
 - Randomly construct *M* matrices
 - Number of samples: 10 1,000,000 per increment

- Simulated annealing (SA)
 - Annealing in metallurgy (slow cooling)
 - Temperature-regulated probability of accepting solutions
 - Minimize ARD%

- Full enumeration
 - A 4-state lumped model found after 40 minutes

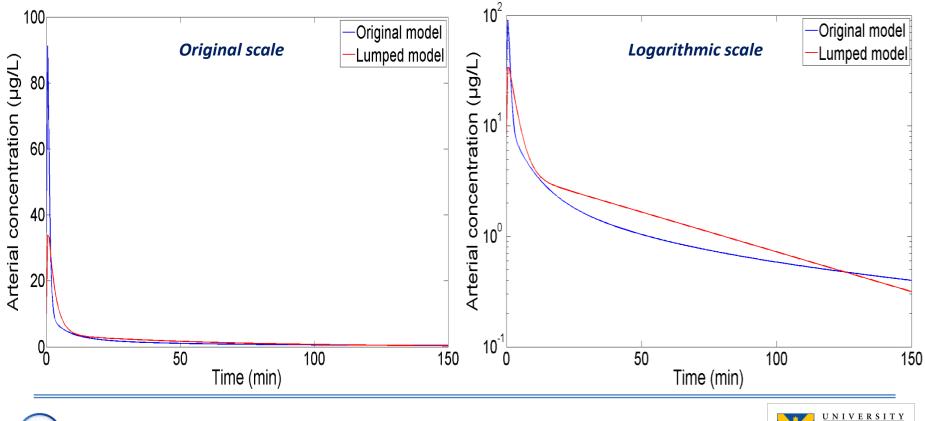
• Non-adaptive random search (NARS)

No. of samples	No. of lumped states	Time cost (min)
10	-	-
100	-	-
1,000	14	0.25
10,000	6	1
100,000	5	5
1,000,000	4	30

- Simulated annealing (SA)
 - A 4-state lumped model found after 3 minutes
 - Stable after various test runs

Simulation of fentanyl arterial concentrations

• Fentanyl arterial concentrations in *original* and *lumped* models



O otago pharmacometrics

Discussion - application

- We have demonstrated automated simplification process using a fentanyl PBPK model
 - Proper lumping technique
 - Constrained on output state of interest
 - Different algorithms for automation
- Potential uses of simplified model structure
 - Population PKPD modelling (e.g. Fibrinogen PKPD modelling)
 - Optimal design (e.g. Methotrexate PK sampling)
 - ...

Gulati et al, CPT Pharmacometrics Syst Pharmacol 2014; 3:e90 Pan et al, 2015 (to be submitted)

Discussion – search algorithms

- The surface of the criterion is spiky & without obvious continuous gradients over the *M*-matrix
 - In some cases there was a million-fold difference in the criterion for two neighbouring lumping matrices (i.e. exchanging a 0 for a 1) and in others only a 10% change
- Full enumeration does not scale well for large-scale problems
 - e.g. 5-state search took 2 months for the fentanyl PBPK example

Discussion – search algorithms

- Non-adaptive random search
 - Requires a large number of samples for a 4-state lumped solution
 - Unlikely to scale well for large-scale problems
- Exchange algorithm (results not shown)
 - Was not stable due to local minima
- Simulated annealing
 - Worked well in this example
 - Has the capacity to escape from local minima

Conclusion

- Methods for automated model simplification represent largescale combinatorial search problems
- It is expected that these methods will have significant potential benefits for those using multi-scale models
 - Simulated annealing may work well for general applications
 - More efficient algorithms may be required for large-scale systems (e.g. >50 states)

Acknowledgements

- University of Otago Postgraduate Scholarship
- School of Pharmacy
- Otago Pharmacometrics Group

