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Human body is multi-scale
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Systems models

• Systems models are multi-scale

– Quantify the interaction between drug(s) and integrated system

– Complex mathematical models 

• Examples of systems models

– Physiologically-based pharmacokinetic (PBPK) models

– Systems pharmacology models, e.g., 

• coagulation network: 62 states 

• bone remodelling and calcium homeostasis: 28 states
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Systems models

• Application of systems models

– PBPK models

• Predict PK in humans before first-in-human studies

• Extrapolate findings in special populations (e.g. paediatrics, the obese) 

– Systems pharmacology models

• Test and identify drug targets in early discovery stage 

• Characterise influence of perturbed conditions on overall efficacy profile

• They are structurally complex and may need to be simplified



Why model simplification?

• These mechanism-driven models can be used to explore datasets

– Better predictability and extrapolatability than empirical approach

– Can be used as the basis of model development for estimation and 
optimisation

• Numeric problems with systems models

– Large number of parameters 

– Unknown or uncertain parameter values 

– Identifiability issue during estimation (i.e. structural / deterministic)



Model simplification

• An existing technique to reduce a complex system into a 
simpler structure (i.e. reduced number of states and 
parameters)

– Has long been investigated in chemical engineering

– Model order reduction algorithms to transform system into fewer 
orders

– Simpler structure yet similar input-output relationship 



Model simplification

• Model simplification techniques

– Time-scale analysis

• Separate system into different time-scales (e.g. mAbs PBPK simplification)

• Replace fast-scale with quasi-steady state (e.g. drug-receptor binding)

• Fix slow-scale state with constant (e.g. constant in disease progression)

– Sensitivity analysis

• Determine and eliminate states insensitive to output of interest

– Lumping

• Merge states into reduced pseudo-states
Okino and Mavrovouniotis, Chem Rev 1998; 98(2):391-408

Elmeliegy et al, AAPS J 2014; 16(4):810-42 
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• A special case of lumping that merges some of the states to only one 
pseudo-state

original           lumped

• Reduced states after proper lumping are able to retain the physical 
meaning as in the original system

Proper lumping

Dokoumetzidis and Aarons, IET Syst Biol 2009; 3(1):40-51



• A special case of lumping that merges some of the states to only one 
pseudo-state

original           lumped

• Reduced states after proper lumping are able to retain the physical 
meaning as in the original system

• Lumping matrix, 𝑀, transforms the states between original and reduced 
systems 

Proper lumping

𝑴



Defining Lumping matrix

• The lumping matrix, 𝑀, is a 𝑚 × 𝑛 matrix of switches (0s and 
1s) where 𝑚 ≤ 𝑛

• 𝑛 is the number of states in the original system

– 𝑛 = 3 for the 3-state example

• 𝑚 is the number of states in the lumped system

– 𝑚 = 2 for lumping the 3-state to be a 2-state system

– All lumped states are shown as 1s in the same row



• Lumping matrix example: 𝑀 =
1 1 0
0 0 1

original         lumped

• For linear systems, proper lumping directly produces 
parameter values for lumped system with given 𝑀

Lumping matrix 
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Proper lumping with 𝑀

Original model: 
𝑑𝑦

𝑑𝑡
= 𝐾 ∙ 𝑦 𝒚: vector of original states, 𝑲: original parameter matrix

Lumped model: 
𝑑  𝑦

𝑑𝑡
=  𝐾 ∙  𝑦  𝒚: vector of lumped states,  𝑲: lumped parameter matrix
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• Lumping matrix example: 𝑀 =
1 1 0
0 0 1

original         lumped

• Automated process is designed to search the 𝑀 that 
satisfies a predefined criterion
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Application example: fentanyl PBPK model

• Fentanyl is a potent synthetic opioid

• Small molecule and highly lipophilic 

– readily distribute into body tissues

• Administration routes: intravenous, transdermal, oral … 

• Intravenous fentanyl is commonly used for anaesthesia during 
surgery and pain management before or after surgery



Fentanyl PBPK model 

Björkman et al, J Pharmacokinetic Biopharm 1994; 22(5):381-410

i.v. dose
17 states

Linear system



Simplification of fentanyl PBPK model

• Inputs for simplifying fentanyl PBPK model

– i.v. infusion of 11 µg/kg over 5 minutes

– Parameter matrix 

– Arterial concentration as measurement of interest

• Proper lumping as the simplification technique

– Arterial state unlumped



Lumping matrix in fentanyl PBPK model

• Original lumping matrix 

𝑀 = 𝐼𝑛;    𝑛 = number of states in original model

• Simplification started from fully lumped matrix

𝑀 =
1 0 0
0 1 1

0
1

…
…

0
1



Parameter matrix in fentanyl PBPK model
…
…
…
…
…
…
…
…
…
…
…
…
…
...
…
…



Acceptance criterion

• Absolute relative difference (ARD%) in total area under concentration-time 
curve (AUC)

ARD% = 22%

𝐴𝑅𝐷% =
𝐴𝑈𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝐴𝑈𝐶𝑙𝑢𝑚𝑝𝑒𝑑

𝐴𝑈𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
× 100%



Automated proper lumping

• Acceptance criterion

– ARD% <= 0.002% in fentanyl PBPK example 

– Least number of rows in lumped model

• Constrained lumping

– Output state unlumped during search

• Software

– MATLAB® (version R2013b)



Start with fully lumped model 
𝒎 = 𝟐

Increment one row
𝒎 = 𝒎+ 𝟏

Individual search algorithm
(Full enumeration, NARS, SA)

New lumping matrix

NO YES

No solution 
found

Satisfy 
criterion 

?

𝒎 < 𝒏 ?
NO

YES

Solution 
found



Automated proper lumping

• Individual search algorithm of 𝑀 matrix

– Full enumeration

– Non-adaptive random search (NARS)

– Simulated annealing (SA)



Automated proper lumping

• Full enumeration

– Exhaustive search all 𝑀 matrices



Automated proper lumping

• Non-adaptive random search (NARS)

– Randomly construct 𝑀 matrices 

– Number of samples: 10 – 1,000,000 per increment



Automated proper lumping

• Simulated annealing (SA)

– Annealing in metallurgy (slow cooling)

– Temperature-regulated probability of accepting solutions 

– Minimize ARD%



Simplification of fentanyl PBPK model

• Full enumeration

– A 4-state lumped model found after 40 minutes



Simplification of fentanyl PBPK model

• Non-adaptive random search (NARS)

No. of samples No. of lumped states Time cost (min)

10 - -

100 - -

1,000 14 0.25

10,000 6 1

100,000 5 5

1,000,000 4 30



Simplification of fentanyl PBPK model

• Simulated annealing (SA)

– A 4-state lumped model found after 3 minutes

– Stable after various test runs



Simulation of fentanyl arterial concentrations 

• Fentanyl arterial concentrations in original and lumped models

Original scale Logarithmic scale



Discussion - application

• We have demonstrated automated simplification process using a fentanyl 
PBPK model

– Proper lumping technique 

– Constrained on output state of interest

– Different algorithms for automation

• Potential uses of simplified model structure 

– Population PKPD modelling (e.g. Fibrinogen PKPD modelling)

– Optimal design (e.g. Methotrexate PK sampling)

– ...
Gulati et al, CPT Pharmacometrics Syst Pharmacol 2014; 3:e90

Pan et al, 2015 (to be submitted)



Discussion – search algorithms

• The surface of the criterion is spiky & without obvious 
continuous gradients over the 𝑀-matrix

– In some cases there was a million-fold difference in the criterion for 
two neighbouring lumping matrices (i.e. exchanging a 0 for a 1) and in 
others only a 10% change

• Full enumeration does not scale well for large-scale problems 

– e.g. 5-state search took 2 months for the fentanyl PBPK example



Discussion – search algorithms

• Non-adaptive random search 

– Requires a large number of samples for a 4-state lumped solution

– Unlikely to scale well for large-scale problems

• Exchange algorithm (results not shown)

– Was not stable due to local minima

• Simulated annealing

– Worked well in this example

– Has the capacity to escape from local minima 



Conclusion

• Methods for automated model simplification represent large-
scale combinatorial search problems

• It is expected that these methods will have significant 
potential benefits for those using multi-scale models

– Simulated annealing may work well for general applications

– More efficient algorithms may be required for large-scale systems 
(e.g. >50 states)
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