
A comparison of bootstrap approaches for estimating standard 
error of parameters in linear mixed effects models

• Standard errors (SE) of parameters are usually obtained by the classical asymptotic
approach via the inverse of Fisher information matrix

• The bootstrap, introduced by Efron (1979)1 is an alternative approach to obtain the

distribution of estimators such as SE or confidence intervals

• The principle of bootstrap is to resample with replacement from the original data to

create replicate datasets with the same sample size

• In PK/PD, case bootstrap (paired nonparametric bootstrap) has been frequently
used, but never compared to other bootstrap alternatives which better take into

account the structure of longitudinal data2,3,4

• Study and propose appropriate bootstrap methods in mixed effects models, focusing
first on linear models (LME)
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CONTEXT

OBJECTIVES

• As expected, bootstrapping only residuals underestimates greatly SEs of parameters

except for σ and provides poor coverage rate

• Case bootstrap (Bcase,none) works well although only the between-subject variability is

resampled

• Case bootstrap and bootstrap of both random effects & residuals (Bcase,none, Bη,GR, Bη,IR,

BPη,PR) perform well and are selected as the bootstrap candidates

- Correction of random effects and residuals improves the estimates for variance

parameters and their SEs, particularly for σ

Performance of bootstrap candidates 

Biasrelative SE(θ)(%) Coverage rateBiasrelative (θ)(%)
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• Evaluate the performance of proposed bootstrap methods by simulation

Bootstrap methods for mixed-effects models

Simulation study 
• Motivating example (courtesy of Prof. Nicholas Holford):

- subset of placebo group with UDPRS (Unified Parkinson’s Disease Rating Scale) score

from entry to 2 years

- linear disease progression model describing natural evolution of Parkinson’s disease5:

S(t) = S0+ α.t

• Three designs:

- rich design: N=100, n=7, σ=5.86

- sparse design: N=30, n=3, σ=5.86

• Two versions of bootstrap

- nonparametric bootstrap: resample from the empirical distribution

▪ correction of random effects & residuals by the ratio between the empirical and

estimated variance-covariance matrix4

- parametric bootstrap: simulate within the estimated distribution
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METHODS

APPLICATION TO REAL DATASET

• The bootstrap candidates perform well in the rich and large error designs but less well in

the sparse design

• BPη,PR works slightly better than Bcase,none

• Bη,GR performs slightly better than Bη,IR

• The bootstrap candidates give

similar estimates for all parameters,

which are also close to asymptotic

estimates

Full 

dataset

SEMean

60
80

10
0

U
P

D
R

S
 s

co
re

• Resample two levels of variability in the longitudinal data

- between-subject variability: resample the entire subjects (case) or the random

effects (η)

- residual variability: resample the residuals from all subjects (global residual, GR) or the

residuals within each subject (individual residual,IR)
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• The four bootstrap methods (Bcase,none, Bη,GR, Bη,IR, BPη,PR) are selected as the bootstrap

candidates due to their good performance in the evaluated designs

• Case bootstrap works well in linear-mixed effects models although only the between-

subject variability is resampled

• Parametric bootstrap of random effects and residuals works slightly better than the case

bootstrap in our simulations, but may not be as robust to model or distributional

misspecifications
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- design with large error: N=100, n=7, σ=17.5

• Number of simulated replication K=1000

• Number of bootstrap per replication B=1000

• Evaluation criteria:

- empirical SE: “true” SE to calculate relative bias of bootstrap SE

- relative bias of bootstrap parameter estimates and their SE: no bias (±5%), moderate

(±5% to ±10% ), important (>±10%)

- coverage rate of the 95% bootstrap CI: good (90-100%), low (80-90%), poor (<80%)

Application to real dataset
• Application of proposed bootstrap methods to the real dataset

- compare mean and SE of bootstrap estimates

CONCLUSIONS

REFERENCES

estimates

• Bcase,none gives different results for SE

of α and ωα in the full dataset

• In the subset with patients staying

until 1.5 years, similar performance of

bootstrap candidates and the

asymptotic approach is observed

- drop-out influences Bcase,none more 

than other bootstraps
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RESULTS
Performance of bootstrap methods in the rich design

Biasrelative (θ)(%) Biasrelative SE(θ)(%) Coverage rate
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