

A comparison of bootstrap approaches for estimating standard error of parameters in linear mixed effects models

H.T. THAI ⁽¹⁾, C. Veyrat-Follet ⁽²⁾, F. Mentré ⁽¹⁾, E. Comets ⁽¹⁾

Inserm

Institut national de la santé et de la rech

(1) INSERM UMR738, University Paris Diderot-Paris 7, Paris, France

(2) Modeling and Simulation Group, Drug Disposition Department, Sanofi, Paris, France

CONTEXT

- Standard errors (SE) of parameters are usually obtained by the classical asymptotic approach via the inverse of Fisher information matrix
- The bootstrap, introduced by Efron (1979)¹ is an alternative approach to obtain the distribution of estimators such as SE or confidence intervals
- The principle of bootstrap is to resample with replacement from the original data to create replicate datasets with the same sample size

• In PK/PD, case bootstrap (paired nonparametric bootstrap) has been frequently used, but never compared to other bootstrap alternatives which better take into account the structure of longitudinal data^{2,3,4}

OBJECTIVES

- Study and propose appropriate bootstrap methods in mixed effects models, focusing first on linear models (LME)
- Evaluate the performance of proposed bootstrap methods by simulation

METHODS

Bootstrap methods for mixed-effects models

- Resample two levels of variability in the longitudinal data
- between-subject variability: resample the entire subjects (case) or the random effects (n)
- residual variability: resample the residuals from all subjects (global residual, GR) or the residuals within each subject (individual residual,IR) Two versions of bootstrap
- nonparametric bootstrap: resample from the empirical distribution
- · correction of random effects & residuals by the ratio between the empirical and estimated variance-covariance matrix

- parametric bootstrap: simulate within the estimated distribution

		Variability related to subject			
		None	Resample the subjects	Resample the random effects	
Variability related to observations	None	Original dataset	B _{case,none}		GR: Global residual PR: Parametric residual IR: Individual residual η: Random effects Pη: Parametric randor effects
	Resample the residuals globally	B _{none,GR} B _{none,PR}	B _{case,GR} B _{case,PR}	Β _{η,GR} Β _{Ρη,PR}	
	Resample the residuals individually	B _{none,IR}	B _{case,IR}	$B_{\eta,IR}$	

Simulation study

- Motivating example (courtesy of Prof. Nicholas Holford):
- subset of placebo group with UDPRS (Unified Parkinson's Disease Rating Scale) score from entry to 2 years linear disease progression model describing natural evolution of Parkinson's disease⁵
- $S(t) = S_0 + \alpha . t$
- Three designs:
 - rich design: N=100, n=7, σ=5.86
 - sparse design: N=30, n=3, σ=5.86
- design with large error: N=100, n=7, σ=17.5
- Number of simulated replication K=1000
- Number of bootstrap per replication B=1000
- Evaluation criteria:

empirical SE: "true" SE to calculate relative bias of bootstrap SE relative bias of bootstrap parameter estimates and their SE; no bias $(\pm 5\%)$, moderate

(±5% to ±10%), important (>±10%) - coverage rate of the 95% bootstrap CI: good (90-100%), low (80-90%), poor (<80%)

Application to real dataset

- Application of proposed bootstrap methods to the real dataset
- compare mean and SE of bootstrap estimates

RESULTS

- As expected, bootstrapping only residuals underestimates greatly SEs of parameters except for σ and provides poor coverage rate
- Case bootstrap (B_{case,none}) works well although only the between-subject variability is resampled
- Case bootstrap and bootstrap of both random effects & residuals (B_{case,none}, B_{\eta,GR}, B_{\eta,IR}, $B_{Pn,PR}$) perform well and are selected as the bootstrap candidates

Correction of random effects and residuals improves the estimates for variance parameters and their SEs, particularly for σ

Performance of bootstrap candidates

• The bootstrap candidates perform well in the rich and large error designs but less well in the sparse desian

Ben PR works slightly better than Bcase po

+ $B_{\eta,GR}$ performs slightly better than $B_{\eta,IR}$

APPLICATION TO REAL DATASET

bootstrap candidates give similar estimates for all parameters, which are also close to asymptotic

gives different results for SE

candidates and the asymptotic approach is observed

CONCLUSIONS

• The four bootstrap methods (B_{case.none}, B_{η,CR}, B_{η,R}, B_{P,R}) are selected as the bootstrap candidates due to their good performance in the evaluated designs

· Case bootstrap works well in linear-mixed effects models although only the betweensubject variability is resampled

• Parametric bootstrap of random effects and residuals works slightly better than the case bootstrap in our simulations, but may not be as robust to model or distributional misspecifications

REFERENCES

- Efron B. Annals of Statistics 1979 :7 :1-26
- Das S, Krishen A. Journal of Statistical Planning and Inference 1999;75: 237-245 Ocana J et al. Mathematics Preprint Series 2005. 3.

Wang J et al. Computer Methods and Programs in Biomedicine 2006;82:130-143 Holford NHG et al. Journal of pharmacokinetics and pharmacodynamics 2006; 33(3): 281-311 Acknowledgments: We would like to thank Prof. Nicholas Holford for providing us the data from Parkinson's study and for his valuable advices

- The estimates
 - of α and $\omega_{\!\alpha}$ in the full dataset

• In the subset with patients staying until 1.5 years, similar performance of bootstrap

drop-out influences B_{cc}

more than other bootstraps