Model-based design of innovative treatment strategies to suppress antimicrobial resistance using collateral sensitivity

Lewis Sheiner Student Session 2021

Linda Aulin

Acknowledgments

LACDR

Quantitative Pharmacology PI: Dr Coen van Hasselt

Collaborators:

Dr. A. Liakopoulos Dr. D.E. Rozen M. Buffoni

L.B.S. Aulin | 29th PAGE | slide 2

How do we alleviate the threat of antibiotic resistance?

75

% Resistant (invasive isolates)

- Increasing resistance is threating treatment efficacy.
- There is a lack of new antibiotics.
- There is a need for innovative treatment strategies using available antibiotics.

Jniversiteit

L**eiden** he Netherlands

Can we exploit resistance to improve treatments?

Antibiotic Resistance of *Escherichia coli*

- --- Aminoglycosides
- --- Amoxicillin-clavulanate
- ---- Cephalosporins (3rd gen)
- --- Piperacillin-tazobactam
- --- Aminopenicillins
- --- Carbapenems
- --- Fluoroquinolones

Center for Disease Dynamics, Economics & Policy (cddep.org)

Antibiotic resistance and collateral effects

Assessing collateral effects in vitro

The concept of CS-based treatments

The Netherlands

How can CS be translated to clinical treatments?

Designing CS-based treatment strategies

L.B.S. Aulin | 29th PAGE | slide 8

Moving towards CS-based treatments

PKPD modelling and simulation framework

Subpop.	MIC AB _A	MIC AB _B
WT	MIC _S	MIC _S
R _A	MIC _R	MIC _S x CS
R _B	MIC _S x CS	MIC _R
R _{AB}	MIC _R	MIC _R

Bacterial subpopulations

k_{Gmax,z}:max growth rate of subpopulation z μ: mutation rate

B(z,µ): stochastic mutation

Antibiotic sensitive wild type \mathbb{R}_{B} Resistant to AB_{B} Resistant to AB_{A} Resistant to AB_{A} and AB_{B}

MIC_s= 1 mg/L

 $MIC_{R} = 10 \text{ mg/L}$

L.B.S. Aulin | 29th PAGE | slide 10

PKPD modelling and simulation framework

Pharmacodynamic model of antibiotic mediated killing

Regoes et al. Antimicrob Agents Chemother (2004)

L.B.S. Aulin | 29th PAGE | slide 12

Simulated treatments

- Two week treatments
- Combination treatment using hypothetical antibiotics AB_A and AB_B
- Twice daily i.v. bolus dosing
- Four simulated dosing regimens:

Simulated bacterial dynamics

Evaluation metric: probability of resistance (PoR)

Subjects with resistant infections (n_R)

L.B.S. Aulin | 29th PAGE | slide 14

Simulated pharmacokinetics and bacterial dynamics

Can CS be used clinically to suppress resistance?

CS ability to suppress resistance depends on the dosing regimen.

How does treatment design affect the utility of CS?

Both drug type and treatment schedule influence the PoR.

Is reciprocal CS needed for resistance suppression?

Reciprocal CS is not necessary for cycling trea Directionality of CS effects influence the PoR. CS towards the second AB has larger impact.

Can administration order impact resistance ?

Administration sequence of antibiotic influence PoR.

How does the utility of CS relate to therapeutic window?

CS-based treatments show greatest promise for antibiotics with a narrow therapeutic window

Key design principles for CS-based treatments

Using our framework to simulate theoretical scenarios we show that:

- **simultaneous** or **one-day cycling** treatment were **most effective**.
- the efficacy of CS-based cycling therapies depends the drug sequence.
- reciprocal CS is not essential to suppress resistance.
- CS based treatments are most relevant for antibiotics with a narrow therapeutic window

Can our general framework can be applied and adapted to specific pathogens and antibiotics?

Fluoroquinolone resistance in Streptococcus pneumoniae

Framework application

including gyrA, parC and gyrA:parC mutants.					
MT	WT	gyrA (gx)	parC (py)	gyrA:parC (gxpy)	
1	$\mathbf{g}_{wt}\mathbf{p}_{wt}$	$g_{\text{S81F}}p_{\text{wt}}$	$g_{wt}p_{D83N}$	$g_{\rm S81F}p_{\rm D83N}$	
2	$g_{wt}p_{wt}$	$g_{\text{S81F}}p_{\text{wt}}$	$g_{wt}p_{D83Y}$	$g_{\rm S81F}p_{\rm D83Y}$	
3	$g_{wt}p_{wt}$	$g_{\text{E85G}}p_{\text{wt}}$	$g_{wt}p_{S79F}$	$\mathbf{g}_{\mathrm{E85G}}\mathbf{p}_{\mathrm{S79F}}$	
4	$g_{wt}p_{wt}$	$g_{\text{S81F}}p_{\text{wt}}$	$g_{wt}p_{S79F}$	g _{S81F} p _{S79F}	
5	$g_{wt}p_{wt}$	$g_{\text{S81Y}}p_{\text{wt}}$	$g_{wt}p_{S79F}$	$g_{\rm S81Y}p_{\rm S79F}$	
6	$g_{wt}p_{wt}$	$g_{\text{E85K}}p_{\text{wt}}$	$g_{wt}p_{S79Y}$	$\mathbf{g}_{\mathrm{E85K}}\mathbf{p}_{\mathrm{S79Y}}$	
7	$g_{wt}p_{wt}$	$\mathbf{g}_{\mathrm{S81F}}\mathbf{p}_{\mathrm{wt}}$	$g_{wt}p_{S79Y}$	$\mathbf{g}_{\mathrm{S81F}}\mathbf{p}_{\mathrm{S79Y}}$	
8	$g_{wt}p_{wt}$	$g_{S81Y}p_{wt}$	$g_{wt}p_{S79Y}$	$\mathbf{g}_{\mathrm{S81Y}}\mathbf{p}_{\mathrm{S79Y}}$	

Constructing mutational trajectories (MT``)

Mutant-specific MICs and fitness

Published human pharmacokinetic (PK) models:

- Ciprofloxacin (CIP)
- Erythromycin (ERY)
- Penicillin (PEN)
- Linezolid (LNZ)

Drug specific PK

Combination treatments could suppress resistance

Summary

In this analysis we:

 use modelling and simulation to systematically unravel drug- and pathogen-specific factors driving AMR.

 identify key design principles to optimal design of CS-based treatment strategies to suppress AMR.

 illustrate how our framework can be applied to specific pathogens and antibiotics.

Thank you for your attention!

l.b.s.aulin@lacdr.leidenuniv.nl

, iniciación

@L_Aulin