

A pharmacometric extension of MCP-MOD in dose finding studies

Simon Buatois^{1,2}

Ph.D. Supervisors:
Dr. Sebastian Ueckert³
Pr. France Mentré¹
Dr. Sylvie Retout²
Dr. Nicolas Frey²

Lewis Sheiner Student Session PAGE 2018, Montreux

- 1. IAME, UMR 1137, INSERM, University Paris Diderot, Sorbonne Paris Cité, Paris, France
- 2. Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel
- 3. Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden

Citation: CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 418–429; doi:10.1002/psp4.12196 © 2017 ASCPT All rights reserved

WHITE PAPER

Advanced Methods for Dose and Regimen Finding During Drug Development: Summary of the EMA/EFPIA Workshop on Dose Finding (London 4–5 December 2014)

FT Musuamba^{1,2,3*}, E Manolis^{1,4}, N Holford⁵, SYA Cheung⁶, LE Friberg⁷, K Ogungbenro⁸, M Posch⁹, JWT Yates⁶, S Berry¹⁰, N Thomas¹¹, S Corriol-Rohou⁶, B Bornkamp¹², F Bretz^{9,12}, AC Hooker⁷, PH Van der Graaf^{13,14}, JF Standing^{1,15}, J Hay^{1,16}, S Cole^{1,16}, V Gigante^{1,17}, K Karlsson^{1,18}, T Dumortier¹², N Benda^{1,19}, F Serone^{1,17}, S Das⁶, A Brochot²⁰, F Ehmann⁴, R Hemmings¹⁶ and I Skottheim Rusten^{1,21}

Citation: CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 418–429; doi:10.1002/psp4.12196 © 2017 ASCPT All rights reserved

WHITE PAPER

Advanced Methods for Dose and Regimen Finding During Drug Development: Summary of the EMA/EFPIA Workshop on Dose Finding (London 4–5 December 2014)

FT Musuamba^{1,2,3*}, E Manolis^{1,4}, N Holford⁵, SYA Cheung⁶, LE Friberg⁷, K Ogungbenro⁸, M Posch⁹, JWT Yates⁶, S Berry¹⁰, N Thomas¹¹, S Corriol-Rohou⁶, B Bornkamp¹², F Bretz^{9,12}, AC Hooker⁷, PH Van der Graaf^{13,14}, JF Standing^{1,15}, J Hay^{1,16}, S Cole^{1,16}, V Gigante^{1,17}, K Karlsson^{1,18}, T Dumortier¹², N Benda^{1,19}, F Serone^{1,17}, S Das⁶, A Brochot²⁰, F Ehmann⁴, R Hemmings¹⁶ and I Skottheim Rusten^{1,21}

23 January 2014 EMA/CHMP/SAWP/757052/2013 Committee for Medicinal Products for Human Use (CHMP)

Qualification Opinion of MCP-Mod as an efficient statistical methodology for model-based design and analysis of Phase II dose finding studies under model uncertainty

 Starting from a predefined set of doseresponse candidate models:

- Starting from a predefined set of doseresponse candidate models:
- 1. **MCP-step:** Assessment of dose-response signal using contrast test on the best model (MS)

- Starting from a predefined set of doseresponse candidate models:
- 1. **MCP-step:** Assessment of dose-response signal using contrast test on the best model (MS)
- 2. **MOD-step:** Estimate the dose-response curve using either model selection (MS) or model averaging (MA)

[1] Bretz F. et al, Biometrics, 2005

PMX

- Starting from a predefined set of doseresponse candidate models:
- 1. **MCP-step:** Assessment of dose-response signal using contrast test on the best model (MS)
- 2. **MOD-step:** Estimate the dose-response curve using either model selection (MS) or model averaging (MA)

1. Model building using multiple LRT on nonlinear mixed effect models (MS)

2. Estimate the dose-response curve using the selected model

MCP-MOD ¹	PMX
 Starting from a predefined set of dose- response candidate models: 	
1. MCP-step: Assessment of dose-response signal using contrast test on the best model (MS)	1. Model building using multiple LRT on nonlinear mixed effect models (MS)
2. MOD-step: Estimate the dose-response curve using either model selection (MS) or model averaging (MA)	2. Estimate the dose-response curve using the selected model
Advantages vs PMX	Advantages vs MCP-MOD
 Models pre-specified Takes model uncertainty into account Control the type I error 	 Longitudinal analysis of the data 3

- Starting from a predefined set of response candidate models:
- 1. **MCP-step:** Assessment of dose-response signal using contrast test on the best model (MS)

2. **MOD-step:** Estimate the dose-response curve using either model selection (MS) or model averaging (MA)

1. Model building using multiple LRT on nonlinear mixed effect models (MS)

PMX

2. Estimate the dose-response curve using the selected model

Advantages vs MCP-MOD

Best of

both worlds

Longitudinal analysis of the data

- Takes model uncertainty into account
- Control the type I error

Models pre-specified

Advantages vs PMX

Statistics in Medicine	Research Article
Received 30 April 2013, Accepted 1 November 2013	Published online 3 December 2013 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/sim.6052	
Model-based dose fin uncertainty using gen parametric models José Pinheiro, ^a Björn Bornkamp,	ding under model neral ^{b*†} Ekkehard Glimm ^b and
Frank Bretz ^o J Pharmacokinet Pharmacodyn (2017) 44:581–597 DOI 10.1007/s10928-017-9550-0	CrossMark
ORIGINAL PAPER	
Model selection and averaging of no for robust phase III dose selection Yasunori Aoki ^{1,2} ©·Daniel Röshammar ^{3,4} ·Bengt Hamro	D nlinear mixed-effect models én ³ · Andrew C. Hooker ¹
The AAPS Journal (2018) 20:56 DOI: 10.1208/s12248-018-0205-x	CrossMark
Research	h Article
Comparison of Model Averaging and M Analyzed by Nonlinear Mixed Effect M	odel Selection in Dose Finding Trials odels

MCP-MC	DD^1	<i>cLRT-MOD</i> e-response candidate els:			
P	Predefined set of dose mod	e-response candidate lels:			
1. MCP-step: Assessment of dose-response signal using contrast test on the best model (MS)		1. cLRT-step: Assessment of dose-response signal using a corrected-Likelihood Ratio Test ²			
2 c	2. MOD-step: Estima curve using either mo model aver	te the dose-response del selection (MS) or aging (MA)			
[1] Bretz F. et al Biometrics 2005		[2] Dette H. et al. Biometrics, 201	5		

1. Corrected-LRT step:

Observed dataset:

rved dataset: $2LL(y, \widehat{\Psi}_{NoDE}) - 2LL(y, \widehat{\Psi}_{MS}) = \Delta OFV_{obs}$

[1] Aoki Y. et al, JPKPD, 2017[2] Buatois S. et al, AAPS, 2018

1. Corrected-LRT step:

Observed dataset:

 $2LL(y,\widehat{\Psi}_{NoDE}) - 2LL(y,\widehat{\Psi}_{MS}) = \Delta OFV_{obs}$

1. Corrected-LRT step:

Observed dataset:

- Model selection (MS):
 - Most commonly used approach
 - Relies on selection of the model that best describes the data as a function of an information criterion
 - Ignores model uncertainty which could impair predictive performance^{1,2}

[1] Musuamba FT. *et al*, CPT Pharmacometrics Syst. Pharmacol, 2017
[2] Mould D.R. *et al*, CPT Pharmacometrics Syst Pharmacol, 2012

7

2. MOD step:

- Model selection (MS)
- Model averaging (MA):
 - Takes into account the uncertainty across a set of candidate models by weighting them as a function of an information criterion^[3]
 - Applications in both NL^[4] and NLME^[5,6] models comparing MA vs MS

[1] Musuamba FT. et al, CPT Pharmacometrics Syst. Pharmacol, 2017

[2] Mould D.R. et al, CPT Pharmacometrics Syst Pharmacol, 2012

[3] Buckland S.T. et al, Biometrics, 1997

[4] Schorning K. et al, Stat Med, 2016

[5] Aoki Y. et al, JPKPD, 2017

[6] Buatois S. et al, AAPS, 2018

- Simplified version of a disease model¹ which characterizes the time course of visual acuity (VA) of wet AMD patients²
- Model:

Simulations

$$f(d_i, t_j, \Phi_i) = VA_{0,i} - VA_{ss_i} \cdot \left(1 - e^{-k_{pr,i} \cdot t_j}\right) + E(d)$$

- Simplified version of a disease model¹ which characterizes the time course of visual acuity (VA) of wet AMD patients²
- Model:

Simulations

 $f(d_i, t_j, \Phi_i) = VA_{0,i} + VA_{ss_i} \cdot (1 - e^{-k_{pr,i} \cdot t_j}) + E(d)$

Asymptotic disease progression

- Simplified version of a disease model¹ which characterizes the time course of visual acuity (VA) of wet AMD patients²
 Asymptotic disease
- Model:

$$f(d_i, t_j, \Phi_i) = VA_{0,i} + VA_{ss_i} \cdot (1 - e^{-k_{pr,i} \cdot t_j}) + E(d)$$

Simulation Model: — Emax — Linear — Loglinear — Sigmoid — No-DE [1] Holford N, *British Journal of Clinical Pharmacology* 79, 2015 [2] Diack C. *et al*, http://www.page-meeting.org/?abstract=3569, 2015 progression

Symptomatic drug effect

Study design

- N patients equally distributed across the different dose levels
- 5 arms: 0, 100, 200, 400 and 1000 μg
- 14 observations per patient: baseline, day 7 & every month during 12 months (End of trial)

Study design

- N patients equally distributed across the different dose levels
- 5 arms: 0, 100, 200, 400 and 1000 µg
- 14 observations per patient: baseline, day 7 & every month during 12 months (End of trial)

Simulation Scenarios:

Scenario	N	Effect	E(d)
Ι	300	Strong	LinearLoglinear
	50	Strong	• Emax
II	50	Weak	SigmoidNo-DE

Challenge both the CLRT and MOD steps

Evaluation Simulation Estimation Scenario Step Linear Loglinear Emax Sigmoid Candidate models Design $m\in 1,\ldots M$ 500 Simulated datasets No-Drug Model Effect

10

I. Strong drug effect & N=300 Type I error & Power

							_
			Linear	Log-linear	Emax	Sigmoid	No-DE
Test				Powe	r (%)		Type-I error [3.2-7%]
		Linear					5.8
4		Log-linear					5.6
	LRT	Emax					5.8
		Sigmoid					5.8
		MS					9.2
		cLRT					6.2
		МСР					4.0

I. Strong drug effect & N=300 Type I error & Power

Percentage of coverage

II. Weak drug effect & N=50 Type I error & Power Simulation model Linear Log-linear Sigmoid Emax No-DE Test Type-I error Power (%) [3.2-7%] Linear 4.8 Log-linear 4.0 LRT 5.6 Emax Sigmoid 5.8 MS 7.6 5.6 cLRT MCP 3.0

II. Weak drug effect & N=50 Type I error & Power

			Linear	Log-linear	Emax	Sigmoid	No-DE
Test				Power	· (%)		Type-I error [3.2-7%]
		Linear	75.8	72.4	79.6	89.4	4.8
4		Log-linear	62.0	83.0	84.8	91.8	4.0
	LRT	Emax	65.2	81.6	84.4	91.2	5.6
		Sigmoid	67.8	40.4	47.2	57.2	5.8
		MS	79.0	86.6	89.6	93.6	7.6
		cLRT					5.6
		МСР					3.0

II. Weak drug effect & N=50 Type I error & Power

			Linear	Log-linear	Emax	Sigmoid	No-DE
čest L			Power (%)				Type-l error [3.2-7%]
		Linear	75.8	72.4	79.6	89.4	4.8
2		Log-linear	62.0	83.0	84.8	91.8	4.0
	LRT	Emax	65.2	81.6	84.4	91.2	5.6
		Sigmoid	67.8	40.4	47.2	57.2	5.8
		MS	79.0	86.6	89.6	93.6	7.6
		cLRT	71.2	81.2	83.8	90.6	5.6
		МСР	14.2	11.2	12.4	16.4	3.0

II. Weak drug effect & N=50 ΔVA Coverages

14

Conclusions

- This work extends the MCP-MOD methodology to use NLMEM in both MCP and MOD steps
- By deriving the reference distribution of the LRT under the null-hypothesis for all candidate models, the method maintains the nominal type-I error while using the full longitudinal information
- The work, furthermore, shows how model averaging provides substantially better coverage in the MOD step, and how the ignorance of model uncertainty leads to an under-estimation of the confidence intervals
- New milestone in the use of pharmacometric methods for primary analysis in dose finding protocols

Perspectives

- Include different disease progression models in the set of candidate models for both the cLRT and MOD steps
- Derive parameter uncertainty from Sample Importance Resampling (SIR)¹ or sampling from Bayesian posterior distribution² instead of the FIM
- Explore the case where the true model is not in the set of candidate models

Inserm Colleagues

Roche Colleagues

Backup slides

Standard LR-test : Limits

- Variance parameter: Unlike linear mixed effect models^[1,2], there is no results identifying the limiting distribution of the LRT in nonlinear mixed effects models
- Identifiability: under the null hypothesis of no dose response certain model parameters are not identifiable and standard LR-test theory is not applicable^[3]
- Model uncertainty & multiplicity: Testing several dose-response candidate models and retaining the best one without adjustment for the significance may lead to a type one error inflation^[4]

[1] Stram D.O. et al, Biometrics, 1994

- [2] Drikvandi R. et al, Biostatistics, 2013
- [3] Dette H. et al, Biometrics, 2015
- [4] Bretz F. et al, Biometrics, 2005

Nonlinear mixed effect models

$$y_{ij} = f_m(d_i, t_j, \Phi_{m,i}) + \varepsilon_{ij} \quad \varepsilon_{ij} \sim \mathbb{N}(0, \sigma_m^2)$$

- y_{ij} is the observation at time $t_j (1 \le j \le n)$ of individual $i(1 \le i \le N)$
- d_i is the dose administered to patient *i*
- $\Phi_{m,i}$ is the vector individual parameters
- ε_{ij} is the residual error

Random-effect model

- $\Phi_{m,i,} = \mu_m \times \exp(\eta_{m,i})$ or $\mu_m + \eta_{m,i}$
- $\eta_{m,i} \sim N(0, \Omega_m)$

<u>Vector of population parameters Ψ_m </u> (size P_m)

- μ_m , fixed effects
- Variance of the random effects Ω_m
- Variance of the residual error σ_m^2

- Simplified version of a disease model¹ which characterizes the time course of visual acuity (VA) of wet AMD patients²:
 Asymptotic disease
- Model:

$$f(d_i, t_j, \Phi_i) = VA_{0,i} - VA_{ss_i} \cdot (1 - e^{-k_{pr,i} \cdot t_j}) + E$$

(d) progression Symptomatic drug effect

[1] Holford N, British Journal of Clinical Pharmacology 79, 2015
[2] Diack C. et al, http://www.page-meeting.org/?abstract=3569, 2015

Coverage probability with MCP-MOD

Figure 3: Empirical coverage probability (based on 2000 simulations), of 90% confidence intervals.

[1] Pinheiro J. et al, Stat Med, 2014

Results

I. Strong drug effect & N=300 MS & MA

II. Weak drug effect & N=50 MS & MA

III. Strong drug effect & N=50 Type I error & Power

		Linear	Log-linear	Emax	Sigmoid	No-DE
9			Powei	r (%)		Type-I error [3.2-7%]
	Linear					5.4
	Log-linear					4.2
LRT	Emax					5.2
	Sigmoid		10	0		5.8
	MS					7.4
	cLRT					4.6
	МСР					4.2

