## Paediatric trial design optimization using prior knowledge in combination with modelling & simulations

Elisa Borella, Sean Oosterholt, Paolo Magni, Oscar Della Pasqua

Lewis Sheiner Student Session PAGE 2017





## **β-thalassemia**

#### **Rare hereditary blood disorder**

- reduced Hb level in RBC
- reduced RBC production
- anemia

#### 1/100,000 per year

Frequent RBC transfusions → Iron overload → Iron chelators



**DEEP** project

**DEEP-2 study** 



## - Efficacy study

To **assess non-inferiority** of deferiprone (DFP) compared to deferasirox (DFX) in paediatric patients (1 month – 18 years)

- Primary endpoint: change in serum ferritin from baseline after 1 year
- **PK sub-study** (at the end of the 1 year efficacy study)

To characterize DFX exposure in paediatric patients (1 year - 18 years)

## **DEEP-2 PK sub-study**

To characterize DFX exposure in paediatric patients

A popPK model for DFX is needed

#### Issues

✓ very sparse PK data✓ few subjects

## **DEEP-2 PK sub-study**

To characterize DFX exposure in paediatric patients

A popPK model for DFX is needed

#### Issues

✓ very sparse PK data✓ few subjects

## **Objective n° 1**

Evaluate to what extent the use of

prior knowledge (adult PK data)
+
allometry (and maturation)

can support the analysis of very sparse PK data

## **DEEP-2 PK sub-study**

To characterize DFX exposure in paediatric patients

A popPK model for DFX is needed

#### Issues

✓ very sparse PK data✓ few subjects

## **Objective n° 2**

Evaluate to what extent the use of

prior knowledge (adult PK data)
+
ED-optimization methods

can support the design of future paediatric PK studies with chelating agents

## **DEEP-2 efficacy study**

To **assess non-inferiority** of DFP compared to DFX in 1 year

## Issues

- ✓ Time to response set to 1 year by empiricism
- ✓ Some patients may be treated with suboptimal doses for a long period

## **DEEP-2 efficacy study**

To **assess non-inferiority** of DFP compared to DFX in 1 year

## Issues

- ✓ Time to response set to 1 year by empiricism
- ✓ Some patients may be treated with suboptimal doses for a long period

## **Objective n° 3**

Evaluate to what extent the use of

## prior knowledge

(adult/pediatric efficacy data)

## drug-disease models

allows prediction of clinical response earlier than 12 months as well as optimization of drug therapy

## **Population DFX PK model**





(a)PAR=POP\_PAR·(WEIGHT/70)<sup>0.75</sup>
(b)PAR=POP\_PAR·(WEIGHT/70)<sup>1</sup>
(c)Fixed to the value reported in Sechaud *et al.* J Clin Pharmacol, 48(8), 2008

## Population drug-disease model for iron overload



Time [months]

Transfusional iron input (mg iron/kg/month) [=1.6 · BLOODCONS (ml RBC/kg/month)] FerMax · Iron Fer50+Iron Iron (t=0)= Fer50 BASELINE FerMax-BASELINE FerMax-BASELINE

## Population drug-disease model for iron overload



Transfusional iron input (mg iron/kg/month) [=1.6 · BLOODCONS (ml RBC/kg/month)] FerMax · Iron Fer50+Iron Iron

## Population drug-disease model for iron overload



Time [months]

## **Objective n°I**

Understanding the impact of prior knowledge on sparse PK sampling

## **DEEP-2 PK sub-study**

Protocol and sampling schedule

- 19 subjects
  - 1 year 18 years
  - Affected by heamoglobinopathies
- 1 PK blood sample for each patient

| Sampling times (minutes) |    |    |    |    |    |    |     |     |     |
|--------------------------|----|----|----|----|----|----|-----|-----|-----|
| PreDose                  | T1 | T2 | Т3 | Τ4 | T5 | Τ6 | Т7  | T8  | Т9  |
| -15                      | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 240 |





## I. Simulation of paediatric PK profiles

from 1 hr pre-dose to 4 hrs post-dose

## Scenario 1

- Parameters allometrically scaled

## Scenario 2 (with sub-scenarios)

- Different model parameters or
- Different allometric exponent





#### Extract

- 19 subjects
- 1 sample/subj



Time after dose [hours]

## Extract

- 19 subjects
- 1 sample/subj



### Extract

- 19 subjects
- 1 sample/subj



#### Extract

- 19 subjects
- 1 sample/subj

## Estimate popPK model

- Typical values of CL, V2, V3, Q and ka
- IIV of CL, V2, V3 and ka

#### **Using** in NONMEM

- FOCE-I
- FOCE-I with \$PRIOR (highly-informative priors)
- FOCE-I with \$PRIOR (weakly-informative priors)



Time after dose [hours]

## **Repeat** until 100 successful runs are obtained



#### **Results** Comparison: No priors *vs* Priors

| Type of sampling  | N° of samples/subj | Scenario                | Priors             | Probability of successful run (%) |
|-------------------|--------------------|-------------------------|--------------------|-----------------------------------|
| Protocol sampling | 1                  | Sconario 1.             | Weakly-informative | 56.50                             |
|                   |                    | only allometric scaling | Highly-Informative | 75.19                             |
|                   |                    |                         | No priors          | 12.22                             |

Probablity of succesful run (%) =  $\frac{100}{n^{\circ} \text{ of runs necessary to obtain 100 successful runs}} \cdot 100$ 

Comparison: Weakly-informative vs Highly-informative priors



Comparison: Weakly-informative vs Highly-informative priors



#### Scenario 1

 Parameters allometrically scaled

# Scenario 2 a) CL=CL<sub>adult</sub>/2 b) CL=CL<sub>adult</sub>/2, V2=V2<sub>adult</sub>/2

c) CL=CL<sub>adult</sub>/2, V2=V2<sub>adult</sub>/2, Q=Q<sub>adult</sub>/2, V3=V3<sub>adult</sub>/2

d) All. exp. CL/Q = 0.85

e) All. exp. CL/Q = 2/3

## **Objective n°2**

Optimization of sparse PK sampling times

## I. Optimization of PK sampling schedule in PopED

## **ED-optimization**

#### Uncertainties on model parameters

- Line Search method
- 19 subjects
   (according to current practice)
- 1 sample/subj
   between 1 h pre-dose
   to 4 hrs post-dose
- 4 designs



## I. Optimization of PK sampling schedule in PopED

## **ED-optimization**

#### Uncertainties on model parameters

- Line Search method
- 19 subjects
   (according to current practice)
- 1 sample/subj
   between 1 h pre-dose
   to 4 hrs post-dose
- 4 designs



## I. Optimization of PK sampling schedule in PopED

## **ED-optimization**

#### Uncertainties on model parameters

- Line Search method
- 19 subjects
   (according to current practice)
- 1 sample/subj
   between 1 h pre-dose
   to 4 hrs post-dose
- 4 designs





#### Extract

- 19 subjects
- 1 optimized sample per subject



## Extract

- 19 subjects
- 1 optimized sample per subject



## Extract

- 19 subjects
- 1 optimized sample per subject

#### Estimate popPK model

- Typical values of CL, V2, V3, Q and ka
- IIV of CL, V2, V3 and ka

## Using in NONMEM

 FOCE-I with \$PRIOR (weakly-informative priors)

Only Scenario 1 (parameters allometrically scaled)



## Extract

- 19 subjects
- 2/3/4 optimized samples per subject

## Estimate popPK model

- Typical values of CL, V2, V3, Q and ka
- IIV of CL, V2, V3 and ka

## Using in NONMEM

 FOCE-I with \$PRIOR (weakly-informative priors)

Only Scenario 1 (parameters allometrically scaled)



Repeat until 100 successful runs are obtained



Comparison: protocol sampling vs optimized sampling (1 sample/subj)

| Type of sampling   | N° of samplos/subi | Probability of successful rup (%)   | Probability (%) of ratios |  |
|--------------------|--------------------|-------------------------------------|---------------------------|--|
| Type of sampling   | in or samples/subj | Probability of successful full (70) | between [ 0.8 ; 1.25]     |  |
| Protocol sampling  | 1                  | 56.50                               | 37                        |  |
| Optimized sampling | T                  | 51.28                               | 42                        |  |



Comparison: 1 optimized sample/subj vs N optimized samples/subj (N=2,3,4)

| Type of sampling   | N° of samples/subj | Probability of successful run (%) | Probability (%) of ratios<br>between [ 0.8 ; 1.25] |
|--------------------|--------------------|-----------------------------------|----------------------------------------------------|
|                    | 1                  | 51.28                             | 42                                                 |
| Ontimized compling | 2                  | 89.96                             | 46                                                 |
| Optimized sampling | 3                  | 92.59                             | 82                                                 |
|                    | 4                  | 94.34                             | 93                                                 |
|                    |                    |                                   |                                                    |



## **Objective n°3**

Efficacy study earlier predicting treatment response

#### **I. Simulation of serum ferritin profiles** from 0 to 12 months



## 2. Prediction of ferritin response at 12 months

after different treatment durations (from 1 to 11 months)



## 2. Prediction of ferritin response at 12 months

after different treatment durations (from 1 to 11 months)

#### Extract for each subj

- **1 sample/month** until the end of the treatment



## 2. Prediction of ferritin response at 12 months

after different treatment durations (from 1 to 11 months)

#### Extract for each subj

- **1 sample/month** until the end of the treatment

## Post-hoc estimation of popPK-PD model

**Extrapolate at 12 months** 



Time [months]

## **3. Classify patients** according to their true and extrapolated values and the criteria specified in the protocol





Time [months]

## **3. Classify patients** according to their true and extrapolated values and the criteria specified in the protocol

Ó

2



Time [months]

10 11 12

9

#### **3. Classify patients** according to their true and extrapolated values and the criteria specified in the protocol



Ó

2

Time [months]

9

**3. Classify patients** according to their true and extrapolated values and the criteria specified in the protocol





Time [months]

#### **3. Classify patients** according to their true and extrapolated values and the criteria specified in the protocol



Ó

Time [months]

9

Extrapolated efficacy outcome vs true efficacy outcome



Extrapolated efficacy outcome vs true efficacy outcome



True efficacy outcome at the end of the treatment *vs* true efficacy outcome at 12 months



True efficacy outcome at the end of the treatment *vs* true efficacy outcome at 12 months



## **Summary**

- Priors increases dramatically the probability of successful convergence of the FOCE-I method
- One sample per subject, even if optimized, leads to a 60% chance of over/underestimating the exposure
- Increasing the number of samples from 1 to 3 shrinks this probability to less than 10%
- The use of a model-based meta-analytical approach leads to predictive performances (e.g., PPV) at 6 months that are not significantly different from those at 1 year, suggesting the possibility of shorter trial duration

Acknowledgments

#### Laboratory for Bioinformatics, Mathematical Modelling and Synthetic Biology at University of Pavia

**Clinical Pharmacology and Therapeutics** group at UCL School of Pharmacy

**DEEP project** 

#### **Contact:**

Elisa Borella elisa.borella02@universitadipavia.it







DEFERIPRONE EVALUATION IN PAEDIATRICS



This project is funded by the European Union (FP7 - GA n° 261483)