Introduction	Objectives	Simulation study	Application	Conclusions
00		0000000	00	

Some Alternatives to Likelihood Ratio and Wald Tests for Pharmacogenetic Studies using Nonlinear Mixed Effect Models

Julie Bertrand^{1,2}, Emmanuelle Comets^{1,2}, Marylore Chenel³ and France $Mentré^{1,2}$

 1 INSERM, UMR 738, F-75018 Paris, France 2 Univ Paris Diderot, Sorbonne Paris Cité, UMR 738, F-75018 Paris, France 3 Institut de Recherches Internationales Servier, F-92400 Courbevoie, France

8 June 2011

Julie Bertrand

PAGE

08/06/11 1

Introduction $\bullet 0$	Objectives	Simulation study	$\begin{array}{c} \mathbf{Application} \\ 00 \end{array}$	$\operatorname{Conclusions}_{\bigcirc}$
Context				

Pharmacogenetics is the study of DNA variations on genes coding for proteins involved in drug absorption, distribution, metabolism, elimination and effect in relation to the inter-individual variability in drug response 1

- Increasing availability of pharmacogenetic data
 - selection of metabolic pathways during drug development
 - individualized therapy
 - integration of diversity in population genetics
- Statistical analyses
 - ANOVA-based approach on derived PK parameters
 - loss of information provided by the complete time profile
 - does not account for additional effects or interactions
 - no direct predictions or dosing recommendations
 - \hookrightarrow Nonlinear Mixed effect models (NLMEM)

¹Licinio et Wong, 2002; Kalow et al., 2001

JUL			

・ロト ・日下・ ・ ヨト・

Introduction \circ	Objectives	Simulation study	$\substack{\text{Application}\\ \circ \circ}$	$\operatorname{Conclusions}_{\mathbb{O}}$
Asymptotic	tests in NL	MEM		

- A biallelic single nucleotide polymorphism (SNP)
 - common, rare homozygotes and heterozygotes
 - effect on pharmacokinetic parameter ϕ_i
 - genotypic model

$$\begin{split} \phi_i &= \mu + \beta_{G_i} + \eta_i \qquad \eta_i \sim N(0,\omega) \\ \beta_{G_i} &= \begin{cases} 0 & \text{if } G_i = \text{common homozygote} \\ \beta_1 & \text{if } G_i = \text{heterozygote} \\ \beta_2 & \text{if } G_i = \text{rare homozygote} \end{cases} \end{split}$$

- $$\begin{split} M_{base}: \{\beta_1=\beta_2=0\}\\ M_{full}: \{\beta_1\neq\beta_2\neq 0\} \end{split}$$
- Likelihood ratio test (LRT) $S = -2 \times (L_{base} - L_{full}) \sim \chi_2^2$ L_{base} et L_{full} the loglikelihoods of M_{base} and M_{full}

• Wald test
$$\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}^T V^{-1} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \sim \chi_2^2$$

V: block for β_1 and β_2 of the estimation variance matrix

 \hookrightarrow Type I error inflation in studies with small sample size and/or unbalanced genotypes 2,3

 $^2\mathrm{Bertrand}$ et al. Journal of Biopharmaceutical Statistics, 2008

³Bertrand et al. Journal of Pharmacokinetics and Pharmacodynamics, $2009 \equiv -90$

Julie Bertrand

$\begin{array}{c} \mathbf{Introduction}\\ \odot \bigcirc \end{array}$	Objectives •	$\begin{array}{c} \mathbf{Simulation \ study} \\ \texttt{OOOOOOOO} \end{array}$	$\begin{array}{c} \mathbf{Application} \\ \circ \circ \end{array}$	$\operatorname{Conclusions}_{\mathbb{O}}$	
Objectives					

- To propose and evaluate by simulation some alternatives to the asymptotic tests to detect a SNP effect on a pharmacokinetic parameter using NLMEM
 - 1. a permutation test for both statistics
 - 2. the use of a F-distribution for the Wald test
 - four different values considered for the denominator degrees of freedom (DF)

■ To apply these methods to the analysis of the pharmacogenetics of indinavir in the COPHAR2-ANRS 111 trial ⁴

⁴Bertrand et al. European Journal of Clinical Pharmacology, $2009 \times 4 \equiv 3 \times 2 = 200$

IIIIA Barrear	
oune Dertrai	

Introduction	Objectives	Simulation study	Application	Conclusions
00		0000000	00	

Permutation test

Introduction	Objectives	Simulation study	Application	Conclusions
		0000000		

F-distribution based alternative

• DF derived from balanced, multilevel ANOVA proposed by Pinheiro et Bates (2000) **N**7

$$DF_{PB} = \sum_{i=1}^{N} n_i - (N + p + k - 2)$$

- p = number of pharmacokinetic parameters k = number of effect coefficients
- implemented in the nlme function in R
- DF proposed by Wolfinger (2000)

 $DF_W = N - q$

- q = number of random effects
- implemented in the NLMIXED procedure in SAS
- DF adapted from a method developed by Gallant (1975) in multivariate nonlinear models

 $DF_G = N - p$ with V multiplied by a factor N/DF_G

• DF from the Satterthwaite formula (1941) extended to NLMEM

 $DF_{FC} \approx 2V^2 / \text{Var}(V)$

- implemented in the MIXED procedure in SAS for LMEM
- extension to NLMEM implemented in MONOLIX only

$\begin{array}{c} \mathbf{Introduction}\\ \circ \circ \end{array}$	Objectives	Simulation study $000000000000000000000000000000000000$	$\substack{\text{ Application}\\ \circ \circ}$	$\operatorname{Conclusions}_{\mathbb{O}}$
Simulation	settings			

- Pharmacokinetic data
 - model and parameters inspired from the COPHAR2 study

• Genetic effect under the alternative hypothesis (H_1)

$\begin{array}{c} \mathbf{Introduction}\\ \circ \circ \end{array}$	Objectives	Simulation study 00000000	$\substack{\text{ Application}\\ \circ \circ}$	$\operatorname{Conclusions}_{\bigcirc}$

Simulated Data (N=40/n=4)

Julie Bertrand

08/06/11 8 / 1

Introduction	Objectives	Simulation study	Application	Conclusions
		0000000		
			- 0.0	

Results from previous simulation studies 2,3

- 1000 simulated data sets under H_0
- FOCE-I in NONMEM 5
- SAEM in MONOLIX 2.1

		N=40	/n=4	N=80	/n=2	N=100	0/n=4,1	N=200	0/n=4
Test	Algorithm	Κ	α	Κ	α	Κ	α	Κ	α
LRT	FOCE-I	964	7.9					956	5.0
	SAEM	1000	8.9	1000	8.7	1000	8.4	1000	5.1
Wald	FOCE-I	924	11.7					860	6.5
	SAEM	1000	7.6	1000	7.8	1000	6.8	1000	5.9

K = number of data sets on which the test could be performed α = type I error Prediction interval for 5% = [3.6 - 6.4]

 $^2Bertrand et al. Journal of Biopharmaceutical Statistics, 2008 <math display="inline">^3Bertrand et al.$ Journal of Pharmacokinetics and Pharmacodynamics, 2009 \equiv

Julie Bertrand

08/06/11 9 / 15

Introduction	Objectives	Simulation study	Application	Conclusions
		0000000		
			0.0	

Results from previous simulation studies 2,3

- 1000 simulated data sets under H_0
- FOCE-I in NONMEM 5
- SAEM in MONOLIX 2.1

		N=40/n=4		N=80/n=2		N=100/n=4,1		N=200/n=4	
Test	Algorithm	Κ	α	Κ	α	Κ	α	Κ	α
IPT	FOCE-I	964	7.9					956	5.0
LITI	SAEM	1000	8.9	1000	8.7	1000	8.4	1000	5.1
Wald	FOCE-I	924	11.7					860	6.5
wald	SAEM	1000	7.6	1000	7.8	1000	6.8	1000	5.9

K = number of data sets on which the test could be performed α = type I error Prediction interval for 5% = [3.6 - 6.4]

²Bertrand et al. Journal of Biopharmaceutical Statistics, 2008 ³Bertrand et al. Journal of Pharmacokinetics and Pharmacodynamics, 2009

Introduction	Objectives	Simulation study	Application	Conclusions
		0000000		
			- 0.0	

Results from previous simulation studies 2,3

- 1000 simulated data sets under H_0
- FOCE-I in NONMEM 5
- SAEM in MONOLIX 2.1

		N=40/n=4		N=80/n=2		N=100/n=4,1		N=200/n=4	
Test	Algorithm	Κ	α	Κ	α	Κ	α	Κ	α
LRT FO	FOCE-I	964	7.9					956	5.0
	SAEM	1000	8.9	1000	8.7	1000	8.4	1000	5.1
Wald	FOCE-I	924	11.7					860	6.5
	SAEM	1000	7.6	1000	7.8	1000	6.8	1000	5.9

K = number of data sets on which the test could be performed α = type I error Prediction interval for 5% = [3.6 - 6.4]

²Bertrand et al. Journal of Biopharmaceutical Statistics, 2008 ³Bertrand et al. Journal of Pharmacokinetics and Pharmacodynamics, 2009 =

Julie Bertrand

Introduction	Objectives	Simulation study	Application	Conclusions
		0000000		

Evaluation

・ロト ・日ト ・ヨト

- Improvement in FOCE-I stability in NONMEM 7.2 with K ≥ 195
- Inflation corrected using the permutation and simulation-based approaches for both estimation algorithms

→ Ξ →

- Improvement in FOCE-I stability in NONMEM 7.2 with $K \ge 195$
 - Inflation corrected using the permutation and simulation-based approaches for both estimation algorithms
- Inflation corrected using the DF_G with SAEM only
 - $DF_{PB}=117$ close to asymptotic estimate
 - DF_W =37 and DF_{FC} =39.8 [36.3-43.8] close to $\mathbb{N} \to \mathbb{R} \to \mathbb{R}$

Introduction	Objectives	Simulation study	Application	Conclusions
		0000000		

Power

- Similar Power estimates for both tests, about 70% after correction using SAEM
- Loss of power for the Wald test with FOCE-I after correction based on permutations or simulations
 - strong correlation of the genetic effect coefficients with their estimation error

$\begin{array}{c} \mathbf{Introduction}\\ \circ \circ \end{array}$	Objectives	Simulation study	Application $\circ \circ$	$\operatorname{Conclusions}_{\bigcirc}$
COPHAR2-	ANRS 111	study		

Multicentre noncomparative pilot trial

- to evaluate the impact of the rapeutic drug monitoring of protease inhibitors in HIV-positive patients naïve of treatment
- Indinavir pharmacogenetic substudy
 - 40 pharmacokinetic profiles at steady state
 - short term efficacy and toxicity outcomes
 - ABCB1 gene exons 21 and 26, CYP3A4*1B, CYP3A5*3 and *6
- Covariate model building
 - modelling performed using SAEM in MONOLIX 2.1
 - screening on individual parameter estimates using nonparametric tests
 - forward selection based on LRT
 - covariates in the final model assessed with all methods

Introduction	Objectives	Simulation study	Application	Conclusions
			00	

Covariate model

- Asymptotic tests = Age on Cl/F and CYP3A4*1B1B on k_a
 - \hookrightarrow age effect discarded based on Permutation test and DF_G
- \Rightarrow 70% decrease in indinavir k_a in CYP3A4*1B1B patients

Introduction	Objectives	Simulation study	Application	Conclusions
				•
Conclusio	ng			

• Type I error inflation of asymptotic tests in pharmacogenetic studies with small sample size and/or unbalanced genotypes

Permutation based approach

- feasible in pharmacogenetic studies for both LRT and Wald test
- comes with substantial computational burden

• F-distribution based approach DF_G

- easy to implement
- \blacksquare validated on real data and other simulated designs (N=80/n=2 and N=100/n=4,1)
- further studies with more complex variability model required
- effective due to inflation factor N/DF_G for the under-evaluation of the estimation variance

- restricted maximum likelihood ⁵ ?
- \Rightarrow First use asymptotic test plus DF_G and in case of discrepancy perform permutations

 $^5\mathrm{Meza}$ et al. Biometrical Journal, 2007

Julie Bertrand