JOINT MODELLING FOR NONLINEAR LONGITUDINAL PSA KINETICS AND SURVIVAL DATA IN METASTATIC PROSTATE CANCER PATIENTS

Solène Desmée 1 & France Mentré 1 & Christine Veyrat-Follet 2 & Bernard Sébastien 3 & Jérémie Guedj 1

 ¹ Infection · Antimicrobials · Modelling · Evolution (IAME) INSERM UMR 1137, University Paris Diderot, Sorbonne Paris Cité Team 'Biostatistics · Investigation · Pharmacometrics'
 ² Drug Disposition, Disposition Safety and Animal Research Department, Sanofi
 ³ Biostatistics and programming, Sanofi

Lewis Sheiner Student Session \cdot PAGE 2016 \cdot Lisbon

- \blacksquare Major public health issue in the world in 2012 $^{\scriptscriptstyle 1}$
 - 2^{nd} most frequently diagnosed cancer of men
 - 5^{th} leading cause of death from cancer in men

 In case of advanced disease and metastatic castration-resistant prostate cancer (mCRPC) patients, reference treatment is a chemotherapy: docetaxel associated to prednisone ²

 2 $\,$ Heidenreich et al (2014) EAU Guidelines on Prostate Cancer. Eur. Urol.

 $^{^1}$ $\,$ Ferlay et al (2013) http://globocan.iarc.fr $\,$

 INTRODUCTION
 Estimation methods
 Mechanistic joint model
 Dynamic prediction
 Conclusions

 0000
 0000
 00000
 00000
 0
 0
 0

METHODOLOGICAL QUESTION

Primary endpoint: survival For each patient i, i = 1, ..., N:
T_i: observed event time
δ_i: Event indicator = { 1 if death 0 if censored
Longitudinal measurements of Prostate-Specific Antigen (PSA)
y_i: vector of longitudinal

measurements

INTRODUCTIONEstimation methodsMechanistic joint modelDynamic predictionConclusion0000000000000000000000

METHODOLOGICAL QUESTION

How can we make the best use of all available longitudinal PSA measurements for survival prediction ?

Modei	SPECIFICATI	ON		
00000				
INTRODUCTION			Dynamic prediction	Conclusions

→ 2 submodels:

LONGITUDINAL PART: Nonlinear mixed-effect models (NLMEM)

$$y_i(t) = \log(PSA(t, \psi_i) + 1) + e_i(t)$$

ψ_i: individual parameters
 e_i(t): residual error

SURVIVAL PART: Hazard function for patient i:

$$h_i(t|\psi_i) = h_0(t) \exp(f(t,\psi_i))$$
 for $t \ge 0$

- **Baseline hazard function** $h_0(t)$
- Link function f depends on individual longitudinal parameters ψ_i

Estimation methods 0000 Mechanistic joint model

Dynamic prediction 00000 CONCLUSIONS

ESTIMATION METHODS

- Two-stage approach (sequential approach)
 - 1. Estimation of the longitudinal parameters using the NLMEM Computation of the individual Empirical Bayes Estimates (EBEs)
 - 2. Estimation of the survival parameters using EBEs as regressors in the survival model

Mbogning et al. (2015) JSCS

³ Rizopoulos et al (2009) J. R. Stat. Soc.

⁴ Holford (2005) PAGE poster

Estimation methods 0000 Aechanistic joint model

Dynamic prediction 00000 Conclusions 0

ESTIMATION METHODS

- Two-stage approach (sequential approach)
 - 1. Estimation of the longitudinal parameters using the NLMEM Computation of the individual Empirical Bayes Estimates (EBEs)
 - 2. Estimation of the survival parameters using EBEs as regressors in the survival model

- Joint approach: **Simultaneous** estimation of the longitudinal and survival parameters by maximization of the joint likelihood ³
 - In the NLMEM framework
 - Laplacian approximation of Nonmem ⁴
 - SAEM algorithm of Monolix: recently extended to joint models ⁵

³ Rizopoulos et al (2009) J. R. Stat. Soc.

 5 $\,$ Mbogning et al. (2015) JSCS $\,$

⁴ Holford (2005) PAGE poster

Estimation methods 0000 Mechanistic joint model

Dynamic prediction 00000 CONCLUSIONS

ESTIMATION METHODS

- Two-stage approach (sequential approach)
 - 1. Estimation of the longitudinal parameters using the NLMEM Computation of the individual Empirical Bayes Estimates (EBEs)
 - 2. Estimation of the survival parameters using EBEs as regressors in the survival model
- Joint sequential approach
 - 1. Estimation of the longitudinal parameters using the NLMEM
 - 2. Estimation of the survival parameters using the joint likelihood fixing longitudinal population parameters to the values obtained at step 1.
- Joint approach: Simultaneous estimation of the longitudinal and survival parameters by maximization of the joint likelihood ³
 - In the NLMEM framework
 - Laplacian approximation of Nonmem ⁴
 - SAEM algorithm of Monolix: recently extended to joint models ⁵

³ Rizopoulos et al (2009) J. R. Stat. Soc.

 5 $\,$ Mbogning et al. (2015) JSCS $\,$

⁴ Holford (2005) PAGE poster

00000	0000	00000000	00000	

Compare by simulations the 3 estimation methods using the SAEM algorithm

00000	0000	0000000	00000	
INTRODUCTION	Estimation methods	Mechanistic joint model	Dynamic prediction	Conclusions

- Compare by simulations the 3 estimation methods using the SAEM algorithm
- **2** Develop a mechanistic joint model to characterize the relationship between PSA kinetics and survival

NTRODUCTION		Dynamic prediction	Conclusions
0000			

- Compare by simulations the 3 estimation methods using the SAEM algorithm
- **2** Develop a mechanistic joint model to characterize the relationship between PSA kinetics and survival
- **3** Provide individual dynamic predictions and assess the predictive performances

Estimation methods	

Compare by simulations the 3 estimation methods using the SAEM algorithm

- 2 Develop a mechanistic joint model to characterize the relationship between PSA kinetics and survival
- **3** Provide individual dynamic predictions and assess the predictive performances

METHODS: SIMULATION DESIGN

Longitudinal part: M = 100 simulated datasets of PSA measured every 3 weeks in N = 500 patients \rightarrow NLMEM for PSA kinetics

- Structural model described by a biexponential function
 - \rightarrow 4 parameters with random effects
- Constant error model on the logarithm of PSA+1

INTRODUCTION ESTIMATION METHODS MECHANISTIC JOINT MODEL DYNAMIC PREDICTION CONCLUSIONS

Methods: Simulation design

Longitudinal part: M = 100 simulated datasets of PSA measured every 3 weeks in N = 500 patients \rightarrow NLMEM for PSA kinetics

- Structural model described by a biexponential function
 - \rightarrow 4 parameters with random effects
- Constant error model on the logarithm of PSA+1

Survival part: $h_i(t|\psi_i) = h_0(t) \exp(\beta PSA(t,\psi_i))$

- Weibull baseline hazard function $h_0(t) = \frac{k}{\lambda} (\frac{t}{\lambda})^{k-1}$
- \blacksquare $\beta:$ strength of the link between predicted PSA and risk of death
 - \rightarrow Simulation of 3 scenarios with increasingly high link
 - \blacksquare No link: $\beta=0$
 - Low link: $\beta = 0.005$
 - High link: $\beta=0.02$

INTRODUCTION	Estimation methods	Mechanistic joint model	Dynamic prediction	Conclusions
	0000			

METHODS: PARAMETER ESTIMATION AND EVALUATION CRITERIA

Using the SAEM algorithm of Monolix 4.2.2

- Two-stage approach
- Joint sequential approach
- Joint approach

INTRODUCTION	Estimation methods	Mechanistic joint model	Dynamic prediction	Conclusions
	0000			

METHODS: PARAMETER ESTIMATION AND EVALUATION CRITERIA

Using the SAEM algorithm of Monolix 4.2.2

- Two-stage approach
- Joint sequential approach
- Joint approach

For the 3 approaches, for each dataset m and for each population parameter θ :

- Relative estimation errors: $REE(\hat{\theta}_m) = \frac{\hat{\theta}_m \theta^*}{\theta^*} \times 100$
 - θ^* true parameter value
 - $\bullet \ \hat{\theta}_m \text{ estimates in the dataset } m$

Survival parameters

■ Two-stage approach → Increasing bias when β increased

- Joint sequential approach \rightarrow Limit biases on survival parameters
- Joint approach → Unbiased estimates in all scenarios

Estimation methods 0000 MAIN RESULTS

Two-stage approach \rightarrow Increasing bias when β increased

- Joint sequential approach Limit biases on survival parameters
- Joint approach → Unbiased estimates in all scenarios

 \rightarrow Joint modelling provides precise estimates for both longitudinal (not shown) and survival parameters in a NLMEM framework

Estimation methods	Mechanistic joint model	Dynamic prediction	Conclusions
000			

The AAPS Journal, Vol. 17, No. 3, May 2015 (© 2015) DOI: 10.1208/s12248-015-9745-5

Research Article

Nonlinear Mixed-Effect Models for Prostate-Specific Antigen Kinetics and Link with Survival in the Context of Metastatic Prostate Cancer: a Comparison by Simulation of Two-Stage and Joint Approaches

Solène Desmée,^{1,2,4} France Mentré,^{1,2} Christine Veyrat-Follet,³ and Jérémie Guedj^{1,2}

Estimation methods 2000 Mechanistic joint model

Dynamic prediction 00000

OBJECTIVES

- Compare by simulations the 3 estimation methods using the SAEM algorithm
- 2 Develop a mechanistic joint model to characterize the relationship between PSA kinetics and survival
- **3** Provide individual dynamic predictions and assess the predictive performances

 roduction
 Estimation methods
 Mechanistic joint model
 Dynamic prediction
 Conclusions

 000
 0000
 00000
 00000
 0
 0

Data

596 mCRPC patients from the control arm of a phase 3 clinical trial treated with the standard first-line chemotherapy: docetaxel every 3 weeks and oral prednisone 6

- A training dataset of 400 randomly selected patients
 - → Development of a mechanistic joint model
- A validation dataset of the 196 remaining patients
 - → Individual dynamic prediction

Spaghetti-plot of PSA from a random subset of 60 patients included in the training dataset

⁶ Tannock et al. (2013) Lancet Oncol.

STIMATION METHODS

Mechanistic joint model 00000000

Dynamic prediction 00000 CONCLUSIONS

MECHANISTIC MODEL FOR PSA KINETICS

PSA is produced by 2 types of cells $^7\colon$

- Sensitive cells (S)
- Resistant cells (R)

$$\begin{cases} \frac{dS}{dt} = \alpha_S (1 - \frac{S+R}{N_{max}})S + g(R-S) - dS\\ \frac{dR}{dt} = \alpha_R (1 - \frac{S+R}{N_{max}})R + g(S-R) - dR\\ \frac{dPSA}{dt} = pS + pR - \delta PSA \end{cases}$$

⁷ Seruga et al (2011) Nat. Rev. Clin. Oncol.

Solène Desmée

INTRODUCTION ESTIMATION METHODS MECHANISTIC JOINT MODEL DYNAMIC PREDICTION CONCLUSIO 00000 0000 00000 00000 00000 0

MECHANISTIC MODEL FOR PSA KINETICS

PSA is produced by 2 types of cells $^7\colon$

- Sensitive cells (S)
- Resistant cells (R)

Treatment initiation at time t=0 \rightarrow Inhibition of the proliferation of S

 $e(t) = \begin{cases} 0 & if \ t \leq 0 \\ \varepsilon & if \ t > 0 \end{cases}$

$$\begin{cases} \frac{dS}{dt} = \alpha_S (1 - e(t))(1 - \frac{S+R}{N_{max}})S + g(R-S) - dS\\ \frac{dR}{dt} = \alpha_R (1 - \frac{S+R}{N_{max}})R + g(S-R) - dR\\ \frac{dPSA}{dt} = pS + pR - \delta PSA \end{cases}$$

⁷ Seruga et al (2011) Nat. Rev. Clin. Oncol.

Estimation methods 0000 Mechanistic joint model 00000000 Dynamic prediction 00000 Conclusions o

MECHANISTIC MODEL FOR PSA KINETICS

For the sake of identifiability

• δ , p and g fixed

Initial conditions: At baseline = time of first PSA measurement

$$PSA_b$$

$$S_b = \frac{\delta}{p} PSA_b$$

$$R_b = \frac{g}{d - RF \times (g+d)} \times \frac{\delta}{p} PSA_b$$

$$\begin{cases} \frac{dS}{dt} = \alpha_S (1 - e(t)) (1 - \frac{S+R}{N_{max}}) S + g(R-S) - dS \\ \frac{dR}{dt} = \alpha_R (1 - \frac{S+R}{N_{max}}) R + g(S-R) - dR \\ \frac{dPSA}{dt} = pS + pR - \delta PSA \end{cases}$$

Solène Desmée

Estimation methods 0000 Mechanistic joint model 00000000 Dynamic prediction 00000 Conclusions o

MECHANISTIC MODEL FOR PSA KINETICS

For the sake of identifiability

• δ , p and g fixed

Initial conditions: At baseline = time of first PSA measurement

$$PSA_b S_b = \frac{\delta}{p} PSA_b R_b = \frac{g}{d - RF \times (g+d)} \times \frac{\delta}{p} PSA_b$$

 $\begin{array}{l} \rightarrow \textbf{6 model parameters with random effects:} \\ \alpha_S, RF = \frac{\alpha_R}{\alpha_S}, RE = \frac{d}{\alpha_R}, \varepsilon, PSA_b, N_{max} \\ \left\{ \begin{array}{l} \frac{dS}{dt} = \alpha_S(1 - e(t))(1 - \frac{S+R}{N_{max}})S + g(R-S) - dS \\ \frac{dR}{dt} = \alpha_R(1 - \frac{S+R}{N_{max}})R + g(S-R) - dR \\ \frac{dPSA}{dt} = pS + pR - \delta PSA \end{array} \right. \end{array}$

INTRODUCTION ESTIMATION METHODS MECHANISTIC JOINT MODEL DYNAMIC PREDICTION CONCLUSION 00000 0000 0000 00000 00000 0

COMPARISON OF DIFFERENT LINK FUNCTIONS

SURVIVAL PART: Hazard function for patient i:

$$h_i(t|PSA(t,\psi_i)) = h_0(t)\exp(f(t,\psi_i)) \quad \text{for } t \ge 0$$

• Weibull baseline hazard function $h_0(t)$

• Link function f depends on PSA kinetics of patient i

1

INTRODUCTION ESTIMATION METHODS MECHANISTIC JOINT MODEL DYNAMIC PREDICTION CONCLUSION 00000 0000 0000 00000 0

COMPARISON OF DIFFERENT LINK FUNCTIONS

SURVIVAL PART: Hazard function for patient i:

$$h_i(t|PSA(t,\psi_i)) = h_0(t)\exp(f(t,\psi_i)) \quad \text{for } t \ge 0$$

• Weibull baseline hazard function $h_0(t)$

• Link function f depends on PSA kinetics of patient i

• No link: f = 0

INTRODUCTION ESTIMATION METHODS MECHANISTIC JOINT MODEL DYNAMIC PREDICTION CONCLUSION 00000 0000 0000 00000 0

COMPARISON OF DIFFERENT LINK FUNCTIONS

SURVIVAL PART: Hazard function for patient i:

$$h_i(t|PSA(t,\psi_i)) = h_0(t)\exp(f(t,\psi_i)) \quad \text{for } t \ge 0$$

• Weibull baseline hazard function $h_0(t)$

 \blacksquare Link function f depends on PSA kinetics of patient i

INTRODUCTION ESTIMATION METHODS MECHANISTIC JOINT MODEL DYNAMIC PREDICTION CONCLUSION 00000 0000 0000 00000 00000 0

COMPARISON OF DIFFERENT LINK FUNCTIONS

SURVIVAL PART: Hazard function for patient i:

$$h_i(t|PSA(t,\psi_i)) = h_0(t)\exp(f(t,\psi_i)) \quad \text{for } t \ge 0$$

• Weibull baseline hazard function $h_0(t)$

 \blacksquare Link function f depends on PSA kinetics of patient i

INTRODUCTION ESTIMATION METHODS MECHANISTIC JOINT MODEL DYNAMIC PREDICTION CONCLUSION 00000 0000 0000 0000 00000 0

COMPARISON OF DIFFERENT LINK FUNCTIONS

SURVIVAL PART: Hazard function for patient i:

$$h_i(t|PSA(t,\psi_i)) = h_0(t)\exp(f(t,\psi_i)) \quad \text{for } t \ge 0$$

• Weibull baseline hazard function $h_0(t)$

• Link function f depends on PSA kinetics of patient i

• No link:
$$f = 0$$

• Initial PSA: $f = \beta \log(PSA(0, \psi_i) + 1)$
• PSA: $f = \beta \log(PSA(t, \psi_i) + 1)$
• PSA slope: $f = \beta \frac{d \log(PSA(t, \psi_i) + 1)}{dt}$

INTRODUCTION ESTIMATION METHODS MECHANISTIC JOINT MODEL DYNAMIC PREDICTION CONCLUSION 00000 0000 0000 0000 00000 0

COMPARISON OF DIFFERENT LINK FUNCTIONS

SURVIVAL PART: Hazard function for patient i:

$$h_i(t|PSA(t,\psi_i)) = h_0(t)\exp(f(t,\psi_i)) \quad \text{for } t \ge 0$$

• Weibull baseline hazard function $h_0(t)$

• Link function f depends on PSA kinetics of patient i

INTRODUCTION ESTIMATION METHODS MECHANISTIC JOINT MODEL DYNAMIC PREDICTION CONCLUSION 00000 0000 0000 0000 00000 0

COMPARISON OF DIFFERENT LINK FUNCTIONS

SURVIVAL PART: Hazard function for patient i:

$$h_i(t|PSA(t,\psi_i)) = h_0(t)\exp(f(t,\psi_i)) \quad \text{for } t \ge 0$$

• Weibull baseline hazard function $h_0(t)$

• Link function f depends on PSA kinetics of patient i

• No link:
$$f = 0$$

• Initial PSA: $f = \beta \log(PSA(0, \psi_i) + 1)$
• PSA: $f = \beta \log(PSA(t, \psi_i) + 1)$
• PSA slope: $f = \beta \frac{d \log(PSA(t, \psi_i) + 1)}{dt}$
• Area under PSA: $f = \beta \int_0^t \log(PSA(u, \psi_i) + 1) du$
• S+R: $f = \beta \log(S(t, \psi_i)) + \beta' \log(R(t, \psi_i))$

INTRODUCTION ESTIMATION METHODS MECHANISTIC JOINT MODEL DYNAMIC PREDICTION CONCLUSIONS 00000 0000 0000 00000 00000 00000 0

RESULTS: MODEL SELECTION

BIC and parameters estimates (r.s.e.(%)) of PSA kinetics and survival in the 400 patients of the training dataset

	No link	Initial PSA	PSA	PSA slope	Area under PSA	S+R
BIC	14598	14582	14446	14581	14575	14421
α_S	0.066(3)	0.060(3)	0.078(3)	0.078(3)	0.061(3)	0.067(3)
RF	0.9997(0)	0.9996(0)	0.9998(0)	0.9998(0)	0.9997~(0)	0.9998(0)
RE	0.81(1)	0.79(1)	0.84(1)	0.84(0)	0.79(1)	0.82(1)
ε	0.42(4)	0.46(4)	0.35(4)	0.35(5)	0.47(4)	0.43(3)
PSA	b 22.2 (8)	22.2(8)	22.0(8)	22.5(8)	22.2(8)	21.9(8)
Nma	z 56 (4)	57(4)	81(4)	77(4)	57(4)	120(4)
λ	885(4)	1615(8)	4259(15)	920(4)	1435(7)	906(7)
k	1.52(5)	1.53(3)	1.28(2)	1.48(2)	1.19(2)	1 (-)
β	-	0.21(12)	0.40(7)	17(17)	0.00023(8)	0.00032(21)
β'	-	-	-	_	-	0.39(7)

INTRODUCTION ESTIMATION METHODS MECHANISTIC JOINT MODEL DYNAMIC PREDICTION CONCLUSIONS 00000 0000 0000 00000 00000 00000 0

Results: Model selection

BIC and parameters estimates (r.s.e.(%)) of PSA kinetics and survival in the 400 patients of the training dataset

	No link	Initial PSA	PSA	PSA slope	Area under PSA	$\mathbf{S} + \mathbf{R}$
BIC	14598	14582	14446	14581	14575	14421
α_S	0.066(3)	0.060(3)	0.078(3)	0.078(3)	0.061(3)	0.067(3)
RF	0.9997(0)	0.9996(0)	0.9998(0)	0.9998(0)	0.9997(0)	0.9998(0)
RE	0.81(1)	0.79(1)	0.84(1)	0.84(0)	0.79(1)	0.82(1)
ε	0.42(4)	0.46(4)	0.35(4)	0.35(5)	0.47(4)	0.43(3)
PSA	b 22.2 (8)	22.2(8)	22.0(8)	22.5(8)	22.2(8)	21.9(8)
N _{ma}	z 56 (4)	57(4)	81(4)	77(4)	57(4)	120(4)
λ	885(4)	1615(8)	4259(15)	920(4)	1435(7)	906(7)
k	1.52(5)	1.53(3)	1.28(2)	1.48(2)	1.19(2)	1 (-)
β	-	0.21(12)	0.40(7)	17(17)	0.00023 (8)	0.00032(21)
β'	-	-	-	-	-	0.39(7)

→ S+R model: $f(t, \psi_i) = \beta \log(S(t, \psi_i)) + \beta' \log(R(t, \psi_i))$ with a constant baseline hazard function (k = 1) provided the smaller BIC

Estimation methods 0000 Mechanistic joint model $\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Dynamic prediction 00000

INDIVIDUAL FITS OF PSA AND HAZARD FUNCTIONS

Solène Desmée

Estimation methods 0000 Mechanistic joint model

Dynamic prediction 00000 Conclusions 0

MEAN SURVIVAL CURVE

Mean survival function $= \frac{1}{N} \sum_{i=1}^{N} S_i(t|\hat{\psi}_i, \hat{\theta})$ obtained using the individual EBEs $\hat{\psi}_i$ estimated using only the PSA measurements and the final joint model

Days since treatment initiation

	Mechanistic joint model	Dynamic prediction	Conclusions
	0000000		

BIOMETRICS		DOI: 10.1111/biom.1253
Using the S Characterizing th	AEM Algorithm for e Relationship betwo Survival in Prostate (Mechanistic Joint Models een Nonlinear PSA Kinetics and Cancer Patients
Solène Desmée, ^{1,2,*}	France Mentré, ^{1,2} Christine	Veyrat-Follet, ³ Bernard Sébastien, ⁴ and

INTROD	

- 1 Compare by simulations the 3 estimation methods using the SAEM algorithm
- 2 Develop a mechanistic joint model to characterize the relationship between PSA kinetics and survival
- **3** Provide individual dynamic predictions and assess the predictive performances

Estimation methods 0000 Aechanistic joint model

Dynamic prediction

METHODS FOR INDIVIDUAL DYNAMIC PREDICTION

Assumption: true nonlinear joint model

→ Population parameters θ used as priors

Estimation methods 0000 Aechanistic joint model

Dynamic prediction

CONCLUSIONS O

METHODS FOR INDIVIDUAL DYNAMIC PREDICTION

Assumption: true nonlinear joint model

→ Population parameters θ used as priors

METHODS FOR INDIVIDUAL DYNAMIC PREDICTION

→ Predict $S_i(s+t|s) = \mathbb{P}(X_i > s+t|X_i > s, \mathcal{Y}_i(s))$ the conditional survival probability up to the prediction horizon s+t with t > 0

Assumption: true nonlinear joint model

→ Population parameters θ used as priors

⁸ Rizopoulos, CRC press (2012)

⁹ Stan development team, Version 2.8.0 (2015)

Estimation methods

Mechanistic joint model

Dynamic prediction

METHODS FOR INDIVIDUAL DYNAMIC PREDICTION

→ Predict $S_i(s + t|s) = \mathbb{P}(X_i > s + t|X_i > s, \mathcal{Y}_i(s))$ the conditional survival probability up to the prediction horizon s + t with t > 0

Assumption: $true\ {\rm nonlinear}\ joint\ {\rm model}$

→ Population parameters θ used as priors

For $\ell = 1, ..., L^8$:

1 Draw in the *a posteriori* distribution of the individual parameters $\psi_i^{(\ell)} \sim \{\psi_i | X_i > s, \mathcal{Y}_i(s), \theta\}$ using STAN software⁹

2 Compute
$$S_i^{(\ell)}(s+t|s)$$

⁸ Rizopoulos, CRC press (2012)

⁹ Stan development team, Version 2.8.0 (2015)

PAGE 2016

Estimation methods 0000 Mechanistic joint model

Dynamic prediction •••••

METHODS FOR INDIVIDUAL DYNAMIC PREDICTION

→ Predict $S_i(s + t|s) = \mathbb{P}(X_i > s + t|X_i > s, \mathcal{Y}_i(s))$ the conditional survival probability up to the prediction horizon s + t with t > 0

Assumption: $true\ {\rm nonlinear}\ joint\ {\rm model}$

→ Population parameters θ used as priors

For $\ell = 1, ..., L^8$:

1 Draw in the *a posteriori* distribution of the individual parameters $\psi_i^{(\ell)} \sim \{\psi_i | X_i > s, \mathcal{Y}_i(s), \theta\}$ using STAN software⁹

2 Compute
$$S_i^{(\ell)}(s+t|s)$$

→
$$\hat{S}_i(s+t|s) = median\{S_i^{(\ell)}(s+t|s)\}_{\ell=1,...,L}$$

+ percentiles for 95% prediction interval

⁹ Stan development team, Version 2.8.0 (2015)

METHODS								
00000	0000	0000000	00000					
			Dynamic prediction	Conclusions				

- Nonlinear joint model
 - Longitudinal part: Structural model described by a biexponential function
 - Survival part: Link between the current PSA value and risk of death
- \blacksquare Estimation of the population parameters θ
 - Using Monolix
 - In the training dataset
- Individual dynamic predictions
 - In the 196 patients of the validation dataset
 - For landmark times $s = \{0, 6, 12, 18\}$ months

Estimation methods 2000 Mechanistic joint model

Dynamic prediction 00000

DYNAMIC PREDICTIONS FOR 2 PATIENTS PATIENT 1 DIED AFTER 24 MONTHS - PATIENT 2 WAS CENSORED AFTER 24 MONTHS

24 / 27

Estimation methods 0000 Mechanistic joint model

Dynamic prediction

DYNAMIC PREDICTIONS FOR 2 PATIENTS PATIENT 1 DIED AFTER 24 MONTHS - PATIENT 2 WAS CENSORED AFTER 24 MONTHS

Patient 1 died after 24 months - Patient 2 was censored after 24 months

24 / 27

PATIENT 1 DIED AFTER 24 MONTHS - PATIENT 2 WAS CENSORED AFTER 24 MONTHS

DISCRIMINATION AND CALIBRATION METRICS

Discrimination: ability of the model to distinguish patients of low and high risk of death

Calibration: ability of the model to predict future events

DISCRIMINATION AND CALIBRATION METRICS

Discrimination: ability of the model to distinguish patients of low and high risk of death

➡ Area under the ROC curve (AUC)

 $\begin{aligned} &AUC(s,t) = \\ &\mathbb{P}(S_i(s+t|s) < S_j(s+t|s) | \mathbf{1}_{\{X_i < s+t\}} = 1, \mathbf{1}_{\{X_j < s+t\}} = 0, X_i > s, X_j > s) \end{aligned}$

The higher the better

Calibration: ability of the model to predict future events

DISCRIMINATION AND CALIBRATION METRICS

Discrimination: ability of the model to distinguish patients of low and high risk of death

➡ Area under the ROC curve (AUC)

 $\begin{aligned} &AUC(s,t) = \\ &\mathbb{P}(S_i(s+t|s) < S_j(s+t|s) | \mathbf{1}_{\{X_i < s+t\}} = 1, \mathbf{1}_{\{X_j < s+t\}} = 0, X_i > s, X_j > s) \end{aligned}$

The higher the better

Calibration: ability of the model to predict future events \Rightarrow **Brier score** (BS) $BS(s,t) = \mathbb{E}[(\mathbf{1}_{\{X>s+t\}} - S(s+t|s))^2|X>s]$

The lower the better

Estimation methods

Aechanistic joint model

Dynamic prediction

CONCLUSIONS

TIME-DEPENDENT AUC AND BRIER SCORE

Estimation methods 0000 fechanistic joint model

Dynamic prediction ○○○○● Conclusions o

TIME-DEPENDENT AUC AND BRIER SCORE

• Metrics improve when s increase

Estimation methods

fechanistic joint model

Dynamic prediction ○○○○● Conclusions 0

TIME-DEPENDENT AUC AND BRIER SCORE

- Metrics improve when s increase
- Here, *s* = 12 months provides the best tradeoff between
 - Follow-up duration
 - Prediction accuracy
 - $\blacksquare AUC(12,t) \simeq 0.75 \ \forall t$
 - $\blacksquare BS(12,t) \leqslant 0.21 \ \forall t$

INTRODUCTION 00000		Mechanistic joint model 00000000	Dynamic prediction 00000	Conclusions •				
Conclusions								

Nonlinear joint modelling

- \blacksquare Unbiased parameter estimations using SAEM algorithm 10
- Characterization of the relationship between biomarker kinetics and survival ¹¹
- Individual dynamic predictions
- → To develop more complex and physiological joint models
 - Several longitudinal biomarkers → based on differential equations
- To apply these approaches and evaluate their benefit in clinical context for decision making

 ¹⁰ Desmée S, Mentré F, Veyrat-Follet C, Guedj
 ¹¹ Desmée S, Mentré F, Veyrat-Follet C, J (2015) The AAPS Journal
 ¹⁰ Sébastien B, Guedj J (2016) Biometrics

THANK YOU FOR YOUR ATTENTION !

Acknowledgements

Back-up

ESTIMATION METHOD: THE JOINT APPROACH

Simultaneous estimation of the longitudinal and survival parameters by maximization of the joint likelihood $^{\rm 12}$

Joint log-likelihood for a patient i:

 $LL_i(\theta) = \log \int p(y_i|\eta_i; \theta) \{h_i(T_i|\eta_i; \theta)^{\delta_i} S_i(T_i|\eta_i; \theta)\} p(\eta_i; \theta) d\eta_i$

where

- $\blacksquare \ \theta$ vector of longitudinal and survival parameters to estimate
- η_i vector of random effects
- p density function of the longitudinal processus
- $S_i(t|\eta_i; \theta) = \exp(-\int_0^t h_i(s|\eta_i; \theta) ds)$ survival function

¹² Rizopoulos et al (2009) J. R. Stat. Soc.

Backup 0●000000

REE FOR THE LONGITUDINAL PARAMETERS

PAGE 2016

INDIVIDUAL WEIGHTED RESIDUALS (IWRES)

BACKUP 0000000

Cox-Snell residuals

Predicted count of sensitive cells

Predicted count of resistant cells

MEAN SURVIVAL CURVE IN THE VALIDATION DATASET

Days since treatment initiation

AUC, BS AND SCALED BS

$$\begin{aligned} &AUC(s,t) = \\ &\mathbb{P}(S_i(s+t|s) < S_j(s+t|s) | \mathbf{1}_{\{X_i < s+t\}} = 1, \mathbf{1}_{\{X_j < s+t\}} = 0, X_i > \\ &s, X_j > s) \end{aligned}$$

$$BS(s,t) = \mathbb{E}[(\mathbf{1}_{\{X > s+t\}} - S(s+t|s))^2 | X > s]$$

$$sBS = 1 - \frac{BS(s,t)}{BS_{KM}(s,t)}$$

BACKUP 0000000

TIME-DEPENDENT CALIBRATION METRICS: SCALED BRIER SCORE

