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Introduction

• Models for binary data

– Logistic regression (LR) models are used to understand the 

relationship between the probability (π) of binary response 
variable (event or no event) and exploratory variable (dose (D ))
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Introduction

• Model evaluation

– “Do the model’s deficiencies have a noticeable effect on the 

substantive inferences?” (Gelman, c 1995)

• Model diagnostics

– Techniques used to examine the adequacy of a fitted model 

(Collett 1999)
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Graphical diagnostics used in LR

• Simple binning

– Grouping of measured data into data classes

• Based on dose

• Based on individuals

– Estimate empirical probability and compare it with model 

predictions  

L=Number of bins; ni =number of individuals in i
th bin 
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Motivating example venlafaxine
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Simple binning as a “diagnostic”
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Aim

• To develop graphical diagnostics that are informative about fit of 

logistic regression model
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Model diagnostics

• Random binning

• Simplified Bayes Marginal Model Plots (SBMMP) 

(Pardoe I, The American Statistician.2002, 56(4): 263-272)
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Random binning

• Generate a distribution of empirical probabilities of events

• Compare empirical probability with model predictions
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Simplified Bayes Marginal Model Plots 

• Hypothesis: If the model describes data, then if we simulate ‘n’

observations, from posterior distribution of MODEL, SPLINE should 

be one of those observations

• Splines are believed to be the best possible empirical fit to the data
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Simulation study

• Simulation 

– Emax model (MATLAB)

• Estimation 

– Emax model (WinBUGS)

– Linear model (WinBUGS)

• Evaluation (MATLAB)



Modelling and Simulation Lab, School of Pharmacy, University of Otago

Simulation- Study design
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Simulation parameters

Design 1 Design 2 Design 3

No.of simulations 30 30 30

No.of individuals 500 500 500

No.of dose levels 5 Random Random

Doses 0,1, 5, 10, 20 Random between 0 

& 20

Random between 0 

& 20

No.of individuals/dose 

level

100 Random Random

No.of events 50%(approx) 50%(approx) 10%(approx)

ED50 5 5 5

Pr(E0) 0.2 0.2 0.05

Pr(Emax) 0.9 0.9 0.825

VarianceE0 0.025 0.025 0.025

VarianceEmax 0.025 0.025 0.025

VarianceED50 0.025 0.025 0.025
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Evaluation

1. Simple binning

– Based on dose

– Based on individuals

2. Random binning

– Based on dose

– Based on individuals

3. Simplified Bayes Marginal Model Plots (SBMMP)
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Random binning 

• Number of bins = 5

• Minimum number of observations/bin=5

Step 1: Sort data by dose

Step 2: Generate 4 bin boundaries randomly based on dose or

individuals 

Step 3: Group data based on bin boundaries generated above

Step 4: Estimate 

Step 5: Repeat steps 2 - 4 1000 times

π~
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SBMMP 

• A linear spline was fitted to data with a maximum of 2 knots
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Design 1 

Simple binning dose
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Design 1 

Simple binning individuals
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Design 1 

Random binning dose
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Design 1 

Random binning individuals
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Design 1 

Model evaluation
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Design 2

May be correct model or may be not!!!
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Design 2

May be not!!!
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Design 2

This is wrong model!!!
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Design 2 

How about the correct model?
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Design 3 

Which binning method should I use??
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Design 3 

Model describes data well!!! 
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Design 3 

May be not!!!!
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Design 3

This is wrong model!!!
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Design 3

How about correct model?
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Discussion

• Simple binning

– Easy to do

– Single realisation of a set of possible empirical probabilities, hence 

biased 

– Data is discrete

• Random binning

– Random binning on average is unbiased, but adds noise

– Data is discrete

• SBMMP

– Additional model to be fitted to the data

– The spline which represents the data is continuous

• Both the Random binning and SBMMP are computationally intensive



Modelling and Simulation Lab, School of Pharmacy, University of Otago

Conclusions

• Simple binning is a useful diagnostic for completely balanced 

designs

• In case of unbalanced designs random binning acts as much better 

diagnostic than simple binning

• SBMMP is the best diagnostics studied here
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Why 30 simulations?

• Assumption

• Number of simulations required for 90% chance of getting the best 

and worst plot
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